
A MARSHALL CAVENDISH 37 COMPUTER COURSE IN WEEKLY PARTS

a
lislim43/44(411ang-fokit ill 1 wit5111,

Vol* 3 	 No 37

MACHINE CODE 38

CLIFFHANGER: KEEPING THE SCORE 	1145

Add a scoring routine to Cliffhanger.
Keep track of how well Willie's doing

GAMES PROGRAMMING 38

FOX AND GEESE GAME: 3 	 1152

Complete the intelligent game with routines
to control the fox and the geese, and look ahead

BASIC PROGRAMMING 77

PREDICTING THE UNPREDICTABLE 	1158

Use statistical methods and computer modelling
to predict happenings in the real world

BASIC PROGRAMMING 78

PATTERNS FROM NATURE 	 1164

Generate complex and beautiful patterns
from simple beginnings

APPLICATIONS 24

TAILORING SPREADSHEETS Am 1172 III
Continue the spreadsheet program* Soon you*ll
be able to plan your expenses or business

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Digital Arts. Pages 1144, 1146, 1148, Alistair Graham. Pages 1152,
1154, 1155, Peter Beard. Pages 1159, 1160, Digital Arts. Page 1163, J D Audio
Visual. Pages 1164, Spectrum/Paul Chave. Pages 1166, 1171, NASA/Paul Chave.
Pages 1168, 1169, 1173, Peter Reilly. Pages 1172, 1173, 1174, 1175, 1176, Chen
Ling.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved*

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V 5PA,
England. Typeset by MS Filmsetting Limited, Frome, Somerset. Printed by Cooper Clegg
Web Offset Ltd, Gloucester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (1R£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are jour binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES : When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries—and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K,
48K,128, and and + 	COMMODORE 64 and 178

El ACORN ELECTRON,
BBC B and B+ 	7-E•ma DRAGON 32 and 64

TANDY TRS80 a 72(81 	VIC 20 mi-m COLOUR COMPUTER

The 'CLIFFHANGER' listings published in this
magazine and subsequent parts bear absolutely no
resemblance to, and are in no way associated with,
the computer game called 'CLIFF HANGER' re-
leased for the Commodore 64 and published by
New Generation Software Limited.

No game is complete without a
scoring routine, and even Willie
won't be satisfied with just the bits
of his picnic. Enter these routines
and play the numbers game

The scoring routine must also scroll on the
appropriate screen and print up the score,
level and lives on the screen*

The following program calls up the appropri-
ate screen, prints up the score and number of
lives Willie has left and plays the tune:

org 58676
call Isi
call scp
Id h1,119
Id a,(57343)
Id b,48
add a,b
call asc
Id a,41
call print

ON THE STARTING BLOCKS
The call Isi calls the routine that scrolls on the
screen* This takes care of which screen is
required, through its elb routine*

Then the scp routine is called. This is the
one that actually prints up the score and has
not been given to you yet, so don't run the
program until you have keyed in the scp
program given below. HL is loaded with 119.
This is print position of the number of lives.
The print routine is going to be called and the
HL register is used to carry the print position
into it*

A is loaded with the contents of 57,343.
This is the memory location set aside to hold

the number of lives that Willie's got left. The
number 48 is loaded into B and the contents
of the two registers are added together to give
the ASCII code for the number that needs to
be printed.

The asc routine is then called* This is the
routine which returns the pointer to the image
data for the numeral needed in ROM. A is
then loaded with 41 to set the colour of the
letter and the print routine is called* This
actually prints the number of lives Willie has
left. The tune routine is then called which
plays the tune* Note that the music routine on
page 966 must now be re-assembled with an
origin of 60000—otherwise it will be
overwritten by the routine that follows it.

call tune
ret

org 58303
Isi

org 58174
asc

org 58217
print *

org 60000
tune

SCORING
This is the scp routine called in the routine
above that actually prints the score on the
screen:

org 58939
scp 	Id h1,55

Id ix,57337
Id b,6

scq 	push bc
Id a,(ix +0)
Id b,48
add a,b
call asc
Id a,41

FIGURING THE FIGURES
HL is loaded with 55, the screen position the
leading digit of the score will be printed at.
The IX index register is loaded with 57,338,
the address of the first byte which contains
the score. The register can then be used as a
pointer.

B is loaded with 5, the number of digits in
the score* This counter is saved by pushing it
onto the stack.

A is then loaded with the contents of the
memory location pointed to by the IX
register—in other words, the first byte con-
taining the score* 48 is added to it to give the
ASCII code and the asc routine is called to get
the image data pointer in ROM.

Then A is loaded with 41 to set the colour
and print is called to print out the digit.

HL is incremented to move along to the
next print position—you'll notice that the
score is being printed from the high digit to
the low. IX is incremented to advance the
score pointer to the next location containing a
score digit* The score is stored as decimal
digits—one in each memory byte—from the
high digit to the low one, up memory.

The B counter is popped back off the stack
and decremented by the djnz instruction. And
if the counter has not been decremented to
zero the processor jumps back to print up the
next digit.

When it has been round the loop five times,
printing up the five digits of the score, the
processor drops out of the loop and returns.

On the Commodore it is necessary to have a
routine at this stage which works out where
positions are on the screen. In previous
routines you have specified X and Y coordi-
nates* From those coordinates, the appropri-
ate screen memory location must be
calculated.

The formula to do this is simple* There are
40 character squares across the screen, so you
must multiply the Y coordinates by 40 and
add the X coordinate to it, then add on 1024,
which is the base address of the screen
memory, to give the appropriate location.

Memory location $0352 is used to store the
X coordinate and $0353 is used to store the Y

coordinate. And locations $0384 and $0385
are going to be used to store the resulting
screen address. These locations are in the
cassette buffer, but the cassette player is not
going to be used while the game is being
played and they are convenient RAM loc-
ations to use to pass parameters in and out of
this multiplication routine*

ORG 20480
LDA $0353
STA $0384
LDA #0
STA $0385
CLC
LDX #5

LOOP CLC
ROL $0384
ROL $0385
DEX
BNE LOOP
LDA $0353
STA $0386
LDA #0
STA $0387
LDX #3

LOOPJ CLC
ROL $0386
ROL $0387
DEX
BNE LOOPJ

MULTIPLICATION
The Y coordinate in $0353 is loaded into the
accumulator and stored directly in the low
byte of the result, $0384* Then the high byte,
$0385, is cleared by storing 0 in it*

Multiplication on an eight-bit processor is
not an easy matter. It has to be done by a
combination of shifts, rotates or repeated
additions. To multiply a number by 40 it is
easiest to multiply it by 8—that is, 213—then
multiply it by 32—which is 2/5—and add the
results together (32 + 8 = 40). Multiplication
by powers of 2 is a relatively simple matter.
To multiply by 2, you simply have to shift all
the bits in a register one place to the left. So to
multiply by 8 you have to shift the bits to the
left three places—or shift them to the left one

call print
inc hl
inc ix
pop bc
djnz scq
ret
org 58174

asc 	*

org 58217
print 	 "

C LC
LDA $0384
ADC $0386
STA $0384
LDA $0385
ADC $0387
CLC
ADC #4
STA 	$0385
CLC
LDA $0352
ADC $0384
STA $0384
LDA $0385
ADC # 0
STA $0385
LDA $0384
STA $FB
LDA $0385
STA $FC
LDY #0
RTS

place three times—and to multiply by 32 you
have to shift them five places to the left, or one
place five times.

The problem is dealing with the bits that
are shifted out of the register.

Fortunately the 6510 chip has a very useful
instruction that helps you deal with this. It is
called a rotate. This is subtly different from.a
straight shift, as it does not lose the bit from
the end of the register when a shift is made.
Nor does it simply fill in the free bit at the
other end with a 0. A rotate fills the empty bit
with the contents of the carry flag and resets
the carry flag with the bit that is shoved out of
the other end of the register.

So here the index register X is loaded with (
5—it is going to count the number of rotates,
or the number of times that the contents of the
register are going to be multiplied by 2—and
the carry flag is cleared. ROL $0384 rotates the
contents of memory location $0384, or the Y
coordinate, one place to the left. Note that
because the carry flag is clear, a zero is put in
the least significant bit. So the contents of this
particular memory location are multiplied by
2 without any extraneous bits and pieces
being added in.

Any bit that has been pushed out of the
register during the rotate is now in the carry
flag. So if a rotate is performed on the high
byte of the result in $0385, any overflow will
be automatically accounted for. The second
rotate will take the overflow bit from the carry
flag and put it into the least significant bit of
the high byte.

The high byte will not overflow of course.
It was set to 0, so you would need to do nine
rotates before any bit entering the least
significant bit on the first rotate would be
shifted out of the most significant bit.

The X register is then decremented and the
BNE instruction loops the processor back until
the contents of the two bytes have been
shifted left five times—that is, until the Y

80 DATA31,1,1
90 DATA17,1,83
100 DATA99,111,114
110 DATA101,58,48
120 DATA48,48,48
130 DATA48,48,31
140 DATA1,2,76
150 DATA105,118,101
160 DATA115,58,32
170 DATA32,32,32
180 DATA32,53,31
190 DATA2,4,17
200 DATA5,162,163
210 DATA164,10,8
220 DATA8,8,165
230 DATA166,167,31
240 DATA10,5,162
250 DATA163,164,10
260 DATA8,8,8
270 DATA165,166,167
280 DATA31,5,4
290 DATA17,3,149
300 DATA150,31,0
310 DATA8,149,150
320 FORA% = &19E6TO

&1A2D:READ?A%:
NEXT

400 FORPASS= 0TO3
STEP3

410 P%= &1A2E
420 [OPTPASS
430 .Heading

440 LDX# 0
450 .Lb1
460 LDA&19E6,X
470 JSR&1803
480 INX
490 CPX # 72
500 BNELb1
510 RTS
520 .PtSL
530 LDA # 31
540 JSR&FFEE

coordinate has been multiplied by 32.
The Y coordinate in $0353 is then loaded

into a temporary storage location at $0386
and the next byte, $0387, is set to 0. The
contents of these two locations are going to be
shifted left in exactly the same way as before,
only this time the loop—and the shift—is only
three times. So $0386 and $0387 end up
containing the Y coordinate times 8.

Now the two results have to be added
together. So the carry flag is cleared, the
contents of $0384 are loaded into the ac-
cumulator and the contents of $0386 are
added to them. The result is stored back in
$0384, which is where it is needed.

Any overflow from this addition will now
be in the carry flag, so when $0385 is loaded
into the accumulator and added to the cont-
ents of $0386, any carry is automatically
taken into account.

A further 4 is added into the high byte-
4 x 256 = 1024. This adds in the base address
of the screen memory.

Then the X coordinate in $0352 is loaded
into the accumulator and added to the low
byte of the result in $0384. The result is
stored back in $0384. Any overflow from this
addition is left in the carry flag.

The high byte of the result is then loaded
into the accumulator and has 0 added to it.
Note, this is an add with carry. So if there is a
carry from the addition of the low byte with
the X coordinate it will be added in now. If
not, the contents of the accumulator remain
unchanged. Either way, they are stored back
in $0385. Note that the contents of the high
byte can't overflow. For that to happen, the
resulting address would have to be more than
65,535 which the highest address permissible
on the 64K Commodore.

The calculation is now complete, but for
added convenience the result is copied from
$0352 and $0353 into the zero-page memory
locations $FB and $FC. Later, when the
result needs to be accessed, say by indirect
indexed address, the instructions can be
shaved by a byte because zero page addressing
is used and speed might be of the essence at
that point in the game.

This routine prints up the score,
lives, clouds
and seagulls

550 LDA# 7
560 JSR&FFEE
570 LDA# 1
580 JSR&FFEE
590 LDA# 17
600 JSR&FFEE
610 LDA#1
620 JSR&FFEE
630 LDX# 0
640 .Lb2
650 LDA&8A,X
660 CLC
670 ADC # 48
680 JSR&FFEE
690 I NX
700 CPX# 6
710 BNELb2
720 LDA# 31
730 JSR&FFEE
740 LDA # 12
750 JSR&FFEE
760 LDA# 2
770 JSR&FFEE
780 LDA&89
790 CLC
800 ADC # 48
810 JSR&FFEE
820 RTS
830]NEXT

HEADINGS
The DATA which gives the words 'score',
`lives', clouds and seagulls is read into a data
table from &19E6 to &1A2D. And the ma-
chine code routine that uses it is assembled
directly after it.

The assembly language program starts by
initializing the index register X to 0 to act as a
loop counter. The byte of data from the data
table pointed to by the base address, offset by
X, is loaded into the accumulator and printed
at the top of the screen by jumping to the
user-defined graphic subroutine which is
located at &1803.

X is then incremented and compared to 72
to check whether all the data has been output
to the screen. If it hasn't, the processor
branches back to deal with the next byte. If it
has, the processor drops out of the loop, hits
the RTS and returns.

FIGURING
Loading A with 31 and calling the routine at
&FFEE, allows you to position the cursor.
The 7 and 1 are the coordinates. Loading A
with 17 and calling &FFEE sets the colour.
Here colour 1 is used, but don't forget
that you've redefined all the colours earlier.

X is initialized to 0 again and the number
in zero-page memory location &8A, offset by
X, is loaded into the accumulator. This

location and the five following it are used to
store the score, in decimal digits, from the
high digit to the low digit, up memory.

The number 48 is added to the figure to
give the ASCII, which is output to the screen
by calling &FFEE.

X is then incremented and the processor
loops back to print out the next digit—unless
it is the case that all six of them have been put
up on the screen.

The cursor is then repositioned at 12, 2 and
the number in &89—which is where the
number of lives are stored—is converted into
ASCII and output to the screen. The pro-
cessor then returns again.

To test it with the other machine code in
the machine CALL&1 B32, putting the level of
the screen in &83.

MI !HI
This routine scrolls on the appropriate screen
and prints up the sun, the lives and the
score—and makes sure that the numbers that
are going to be displayed on the screen do not
bump into each other:

ORG 19489
JSR $4AA5
LDX #1807
LDU # 17544
LDB #5

SCPR 	LDA #3
SCPRI 	PULU Y

STY ,X+ +
DECA
BNE SCPRI
LEAX 26,X
DECB
BNE SCPR
JSR PRSC
LDX # 2063
LDU # 17574
LDB #5

SCPRZ LDA # 3
SCPRC PULU Y

STY ,X + +
DECA
BNE SCPRC
LEAX 26,X
DECB
BNE SCPRZ
LDA 18239
LDB #5
MUL
ADDD #17724
TFR D,U
LDX # 2070
LDB #5

SCPRD PULU A
STA ,X
LEAX 32,X

DECB
BNE SCPRD
JSR 30000
RTS
NOP
NOP

PRSC 	PSHS D,X,Y
LDX # 18240
LDB #6
LDY # 1814

PRSCB LDA ,X
PSHS X,B
BITB #1
BNE ROLL
LDB #5
MUL
ADDD # 17724
TFR D,X
PSHS Y
LDB #5

PRSCA LDA ,X+
STA ,Y
LEAY 32,Y
DECB
BNE PRSCA
PULS Y
LEAY 1,Y

ROLRET PULS B,X
LEAX 1,X
DECB
BNE PRSCB
PULS Y,X,D
RTS

ROLL 	LDB # 5
MUL
ADDD # 17724
TFR D,X
PSHS Y
LDB # 5

RLLA 	LDA ,X +
PSHS A
ANDA #15
LSLA
LSLA
LSLA
LSLA
ORA # 5
STA 1,Y
PULS A
LSRA
LSRA
LSRA
LSRA
ORA # $50
STA ,Y
LEAY 32,Y
DECB
BNE RLLA
PULS Y
LEAY 2,Y
BRA ROLRET

THE SCREENING
The first thing this routine does is jump to the
subroutine at $4AA5 which scrolls on the
screen and prints up the sun.

Then X is loaded with the screen position
which you want to start printing with the
word 'SCORE'. U, the user stack pointer, is
loaded with the start position of the word data
in memory. This was input as a data table in
an earlier part. And B is set to 5. The letters
are only five bytes deep.

There are five letters in the word 'SCORE'
plus a space, making six. But A is only loaded
with 3 as the Y register is going to be used to
print two bytes at a time.

The last two bytes of data are pulled off the
stack—which is, in fact, the area of the data
table pointed to by U. These two bytes are
stored at the screen position pointed to by the
X register and the one next to it. The X
register is then incremented twice to move it
onto the next screen position.

A is then decremented and the BNE SCPRI
branches back until all six bytes of data, which
make up a single line of the word, have been
printed. When one line has been printed,
LEAX 26,X increments the X register by 26 to
move it from the right-hand end of one line to
the left-hand end of the one below it. There
are 32 locations across the screen and six
letters: 32 — 6 = 26.

B is then decremented and the processor
branches back to deal with the next line if all 5
lines of the word have not been printed yet.

When they have, JSR PRSC jumps off to the
subroutine that prints the score on the screen.

THAT'S LIVES
The next routine which prints up the word
`LIVES' is almost an exact repeat of the
routine that printed 'SCORE' above—only
the screen pointer in X and the data pointer in
U are loaded with different values. The word
is to be printed in a different position,
obviously, and its data is in a different part of
the data table. How the printing is done,
though, is exactly the same.

This routine does not jump to the subrout-
ine to print up the actual number of lives
though. That follows on directly after the end
of the word-print routine.

The number of lives Willie has left is
stored in 18,239. The contents of this location
are loaded into A. B is loaded with 5 and the
contents of the two registers are multiplied
together.

The display data for the figure has to be
located in the data table before it can be
printed on the screen. Each figure requires
five bytes of data to describe it, so to locate the

beginning of the right area of data you have to
count along the data table in multiples of five.

The result of a MUL—which multiplies the
contents of A and B—is put in D. 17,724—the
base address of the table—is then added to
this, so the result points to the start of the
appropriate figure's display data in memory.

This pointer is then transferred into the
user stack pointer, U, so that this area of data
effectively becomes the user stack.

Again X is loaded with the screen position
where the number of lives is to be printed and
B is loaded with 5, to count the five bytes of
data needed to make up the figure. The first
byte to figure display data is pulled off the
user stack into A. Then it is stored at the
screen position given by X*

X is incremented by 32 this time, as only
one figure is to be printed, and the screen
pointer has to be moved down one screen
position to fill in the next line of pixels of the
figure.

B is decremented and the processor bran-
ches back to deal with the next byte if all five
bytes haven't been printed on the screen yet.

Then, to finish off, the processor jumps to
the subroutine at 30,000 which plays the
tune. And when it returns here, the RTS sends
it back to BASIC.

This RTS will be overwritten later, when
the whole program is put together. It is
followed by two NOPs—which are No
OPeration instructions. These do nothing and
are only here to make enough room for a JSR
instruction, when the RTS is overwritten.
Then the processor will have to be directed to
the action loop driving the whole program.

THE NUMBERS GAME
The data for each pixel line of the figures
takes up a whole byte. So if you print them
directly next to each other, they tend to merge
into each other and become illegible.

To overcome that difficulty, the score print
routine rolls figures along half a byte to create
a gap between them and make the score
readable.

The PRSC routine begins with the contents
of D,X,Y being pushed onto the hardware
stack. This is to preserve their values. In fact,
it is only the value in Y that is going to be
needed later. But when you are writing
machine code it is best to push the contents of
all the registers you are going to use in a
subroutine. You might decide that you need
to carry an important parameter in a register
later. So the rule is—if in doubt, push it.

Memory location 18,240 holds the first
byte of the score. The decimal value of each of
the six digits of the score—from the highest to

• the lowest—are held in six memory locations

from 18,240 up memory to 18,246.
There are six figures to be printed so B is

loaded with 6. Y is loaded with the print
position*

A is loaded with the contents of the
location pointed to X, which points to the
score memory. Then the values in X and B are
preserved by pushing them onto the stack.

Bit zero of B is then checked. If B is even,
that is, bit zero is not set, BNE ROLL branches
off to the ROLL routine, which shoves every
other figure half a space to the right. But if B
is odd and bit zero is set, the processor
continues with the next instruction*

To print the figure up on the screen, you
have to proceed in the same way as printing
the lives. You multiply the figure required by
5 and add the base address.

This time, though, the resulting pointer is
transferred into X and the print position
pointer in Y is stored by pushing it onto the
stack.

The relevant byte of display data for the
figure in question is then loaded into A and X
is incremented. And it is then stored at the
screen position pointed to by Y. Y is in-
cremented by 32 to move down one line of
pixels. B is decremented and the processor
branches back to deal with the next byte of
data until all five have been output to the
screen.

When it has finished the initial screen
position pointer is pulled off the stack again.
It is incremented to move it onto the next
print position to the right.

The values of counter in B and the score
memory pointer in X are then pulled off the
stack again* X is incremented ready to deal
with the next figure to the right. And B is
decremented, to count down the figures that
have been dealt with. The processor then
branches back to deal with the next figure, if
they haven't all been dealt with yet.

If all the figures have been printed on the
screen, the Y,X and D registers are restored
by pulling the values they had at the beginn-
ing of the subroutine off the stack again. Then
the processor returns to the place it was called
in the main routine.

ROLLING ALONG
If the figure in B was even and the ROLL
routine was called, the processor starts off by
locating the start of the appropriate figure's
data in the data table. It multiplies the score
figure by five and adds on the base address,
transfers the result into X, pushes the print
position and loads the B register with the byte
counter*

LDA,X + loads the accumulator with a byte
of the figure data and increments the pointer.

This byte is pushed onto the hardware stack
to preserve it.

The contents of A are then AN Ded with 15,
which preserves the low nybble and clears the
high one. Four LSLAs—Logic Shift Lefts on
the Accumulator—move the low nybble a bit
at a time into the high nybble.

ORing the result with 5 puts yellow—the
background colour—into the low nybble.
Then it is stored at the print position given by
the screen pointer Y plus 1. This prints the
right-hand half of the bit pattern on the
screen at the position two to the right of the
preceding figure—but shoved half a space to
the left.

The whole bit pattern is then pulled off the
hardware stack again and the high nybble is
shifted right, into the low nybble. ORing with
50 hex sets the high nybble to bright yellow.
And the resulting byte is stored at the print
position pointed to by Y* This prints the left-
hand side of the bit pattern in the right-hand
half of the print position following the pre-
ceding figure—and marries it up to the right-
hand half of the bit pattern in the left-hand
half of the next print position. The other two
halves of the print positions are filled in with
the background colour yellow, effectively
leaving a half digit gap between each figure.

LEAY 32,Y increments Y by 32 to deal with
the next line of pixels down the figure. B is
decremented and the processor branches back
to pick up the next byte of the bit pattern,
unless all five lines of pixels have already been
printed.

When all that has been done, the processor
drops out of the loop and increments Y by a
further 2. This moves the screen pointer two
positions to the right—effectively the even-
numbered figure has occupied two adjacent
screen positions.

BRA ROLRET then branches always back to
the label ROLRET, where the pointers are
updated before the routine jumps back to deal
with the next—odd-numbered—digit.

Allow your computer to collect its
thoughts before the game
commences* With these routines it
can play fox or geese, and can look
ahead to improve its play

This is the third and final part of the Fox and
Geese article. The remaining routines are
those which will enable the computer to take
the part of either the fox or the geese. In fact
the machine can be set to play both parts,
when it competes against itself, or you could
set it to play neither and play against one of
your friends using the computer instead of a
board and pieces.

a
210 LET P=B(G(1))+ B(G(2))+ B(G(3))+

B (G(4))
220 LET X= F: IF P < B(32) THEN LET

P=P—BX: LET X= 33 — F
230 LET P =13 13(X): RETURN
250 LET F= FN A(ABS P) —30: LET

B=P/B(F): IF B <0 THEN LET
B= B+BX: LET F=33— F

260 FOR A=1 TO 4: LET G(A)=FN
A(B) +1: LET B= B— B(G(A)): NEXT A:
RETURN

210 P= B(G(1)) + B(G(2)) + B(G(3)) +
B(G(4))

220 X= F:IFP<B(31)THENP= P—BX:
X=31 — F

230 P=P*B(X):RETURN
250 F= FNA(ABS(P)) —31:B = P/B(F):

IFB<0THENB=B+BX:F=31—F
260 FORA =1T04:G(A) = FNA(B):

B = B — B(G(A)):NEXTA:RETURN

210 P=B(G(1))+B(G(2))+
B(G(3)) + B(G(4))

220 X= F:IF P <B(31) THEN
P = P— BX:X= 31 —F

230 P=P*B(X):RETURN
250 F= FNA(ABS(P)) — 31:B = P/B(F):IF

B<0 THEN B=B+BX:F=31—F
260 FORA =1T04:G(A) = FNA(B):B= B—B

(G(A)):NEXTA:RETURN

tglOi
210 P=B(G(1))+ B(G(2))+B(G(3))+

B(G(4))
220 X= F:IFP < B(31) THENP=P—BX:

X=31— F
230 P=P*B(X):RETURN
250 F= FNA(ABS(P)) —31:B = P/B(F):

IFB<0 THENB=-B+BX:F=31—F
260 FORA = 1T04:G(A) = FNA(B):

B=B—B(G(A)):NEXT:RETURN

These are two of the most important routines
in the program. The routine from Line 210 to
Line 230 evaluates the playing position and
packs it into a single number. Conversely,
when the program has decided on the value of
the best move, it has to convert that number
into a move—or set of positions for the pieces.
Lines 250 and 260 unpack the single value
into the set of values needed for positioning
the pieces.

These subroutines are called very frequ-
ently during the program, so they have been
placed right at the start of the program.

FOX'S MOVE

a
1010 GOSUB 210
1020 GOSUB 310: GOSUB 250
1030 IF F> 28 THEN PRINT AT 21,0;

"THE FOX HAS WON ❑
111001111110000 0000 ":
GOTO 1410

1032 GOSUB 410: IF V= H THEN PRINT
"THE GEESE HAVE WON 00
000 ❑❑❑❑❑❑❑❑ ":
GOTO 1410

1040 IF PF THEN GOTO 1110
1050 INPUT "MOVE FOX TO ";B: IF B= —1

THEN GOSUB 2710: GOTO 1030

1060 FOR A=1 TO X(F): LET X= M(A,F): IF
X= B THEN IF NOT (FN X(X)) THEN LET
F= B: GOSUB 210:
GOTO 1200

1070 NEXT A: PRINT AT 21,0;"THAT
IS NOT LEGAL ❑ 0E0
00111111 ❑❑ GOTO 1050

1110 LET L=SF: LET M =SF: LET
V(M) =FM: IF M >4 THEN DIM
R(HF+3): DIM S(HF+3)

1112 GOSUB 1120: GOTO 1200
1120 IF L=1 THEN GOTO 410
1122 IF L<M —2 THEN GOSUB 1610: IF

V< >0 THEN RETURN
1130 LET L= L-1: LET V(L) = WI: LET

A(L) = X(F): LET F(L)=F
1140 LET F=M(A(L),F(L))
1150 IF FN X(F) =0 THEN GOSUB 1320: IF

PLAYING AT HIGHER LEVELS
FOX'S MOVE ROUTINE

MOVING THE GEESE
CHOOSING THE BEST MOVE

IN A 'ONE MOVER'

PLAYING AT HIGHER LEVELS
USING THE ALPHA-BETA

ALGORITHM
USING THE HASH-CODE TABLES

FOR A FASTER GAME

V > V(L) THEN LET V(L) =V: LET P(L)=F:
IF V>V(L+ 1) THEN LET F=F(L): LET
L = L + 1: RETURN

1160 LET A(L) =A(L) -1: IF A(L) > 0 THEN
GOTO 1140

1170 LET V = V(L): LET F=F(L): LET
L= L+1: IF L=M THEN LET
F= P(M -1): GOSUB 210: RETURN

1172 IF L<M -2 THEN GOSUB 1510:
RETURN

1180 RETURN

1010 GOSUB 210
1020 GOSUB 310:GOSUB 250
1030 IFF>27THEN PRINTTAB(8);

"THE FOX HAS WON":GOT01410

1032 GOSUB410:IFV= HTHEN PRINT
TAB(8);"THE GEESE HAVE
WON":GOT01410

1040 IF PF THEN PRINTTAB(8);
"THINKING...":GOTO 1110

1050 INPUT"IMINIMMI
MOVE FOX TO";B

1055 GOSUB 340:IF B= -1 THEN
PRINTTAB(8);"THE GEESE HAVE
WON":GOT01410

1060 FORA = 0TOX(F):X= M(A,F):IFX= B
THENIFNOTFNX(X)THENF=B:GOSUB210:
GOT01200

1070 NEXTA:PRINTTAB(8);"THAT IS NOT
LEGAL":GOT01050

1110 L =SF:M =SF:V(M) = E*M:IFM > 4
THENFORA=0TOHF:R(A)= 0:
NEXTA

1112 GOSUB1120:GOT01200
1120 IFL=1THEN410

1122 IFL<M -2THENGOSUB1610:
IFV< >0THEN RETURN

1130 L=L-1:V(L)=H*L:A(L)=X(F):
F(L) = F

1140 F=M(A(L),F(L))
1150 IFFNX(F)< >0THEN 1160
1155 GOSUB1320:IFV>V(L)THENV(L) =V:

P(L) = F:IFV> V(L +1)THENF = F(L):
L= L+1:RETURN

1160 A(L)=A(L)-1:IFA(L)> =0THEN1140
1170 V=V(L):F=F(L):L=--L+1:IFL=M

THENF = P(M -1):GOSUB210:RETURN
1172 IFL<M -2THENGOSUB1510:RETURN
1180 RETURN

1010 GOSUB 210
1020 GOSUB 310:GOSUB 250
1030 IF F> 27 THEN PRINT TAB(8);"THE FOX

HAS WON":GOT01410
1032 GOSUB49):IF V=H THEN PRINT

TAB(8);"THE GEESE HAVE
WON":GOT01410

1040 IF PF THEN PRINT TAB(8);
"THINKING...":GOTO 1110

1050 INPUT TAB(8)"MOVE FOX TOD" B
1055 GOSUB 340
1060 A= 0:REPEATX=M(A,F):IFX< >B OR

FNX(X) THEN A = A + I:UNTIL
A>X(F):ELSE UNTIL TRUE:
F=B:GOSUB210:GOT01200

1070 PRINT TAB(8);"THAT'S NOT LEGAL":
GOTO 1050

1110 L=SF:M =SF:V(M)= E*M:IFM >4

THEN FOR A = 0TOHF:R(A) = 0:NEXTA
1112 GOSUB 1120:GOTO 1200
1120 IFL=1 THEN 410
1122 IF L< (M -2) THEN GOSUB 1610:

IFV< >0 THEN RETURN
1130 L=L-1:V(L)=H*L:A(L)=X(F):

F(L) = F
1140 F=M(A(L),F(L))
1150 IF FNX(F) =0 THEN GOSUB 1320:IF

V >V(L) THEN V(L)=V:P(L)=F:
IFV>V(L+1) THEN F=F(L):L= L+1:
RETURN

1160 A(L)=A(L)-1:IFA(L)> =0 THEN 1140
1170 V=V(L):F=F(L):L=L+1:

IFL= M THEN F= P(M -1):
GOSUB210:RETURN

1172 IF L< (M -2) THEN GOSUB1510:
RETURN

1180 RETURN

ti_Ut
1010 SCREEN1,0:GOSUB210:GOT01030
1020 XX= FNXX(G):YY= FNYY(G):PUT

(XX,YY) - (XX +19,YY +19),SQ,PSET:XX
=FNXX(G(C)):YY= FNYY(G(C)) + 5:
PUT(XX,YY) - (XX + 19,YY + 9),GS,PSET

1030 CLS:IF F > 27 THEN PLAYV$:
PRINT©7,"THE FOX HAS
WON":GOT01410

1032 GOSUB410:IF V=H THENPLAYV$:
PRINT@6,"THE GEESE HAVE
WON":GOT01410

1040 LINE(180,0)-(255,191),PRESET,
BF:IF PF THENDRAW"BM180,50C4"+
TH$:GOT01110

1050 DRAW"BM180,80C4"+ MW$:XX=
FNXX(F):YY= FNYY(F):GOSUB1810:
B =4*INT(YY/20):B=FNCN(B)

1055 IF B = —1 THENPLAYV$:PRINT@6,
"THE GEESE HAVE WON":GOT01410

1060 FORA =0TOX(F):X = M(A,F):
IFX= B AND NOTFNX(X) THENA =X(F):
XX = FNXX(F):YY= FNYY(F):PUT
(XX,YY) — (XX +19,YY + 19),
SQ,PSET:F= B:GOSUB210:NEXT:
GOT01200

1070 NEXT:GOSUB5000:GOT01040
1110 L=SF:M =SF:V(M)= FM:IFM >4

THENFORA =0TOHF:R(A) = 0:NEXT
1112 LF=F:GOSUB1120:XX= FNXX(LF):

YY=FNYY(LF):PUT(XX,YY)— (XX +19,
YY + 19),SQ,PSET:GOT01200

1120 IFL =1 THEN410
1122 IFL<M-2 GOSUB1610:IF V< >0

THEN RETURN
1130 L= L-1:V(L)=H*L:A(L)=X(F):

F(L)=F
1140 F=M(A(L),F(L))
1150 IFFNX(F) = 0 GOSUB1320:IFV>V(L)

THENV(L) = V:P(L) = F:IF V > V(L + 1)
THEN F=F(L):L=L+1:
RETURN

1160 A(L)=A(L)-1:IF A(L)> = 0THEN
1140

1170 V=V(L):F=F(L):L=L+1:
IFL= M THENF= P(M —1):
GOSUB210:RETURN

1172 IF L<M-2 GOSUB 1510
1180 RETURN

Lines 1020 to 1180 handle the fox's move.
The routine uses the board display subrout-
ine to display the current status of the board,
then goes on to check if the fox has won in
Line 1030. It then checks if there is at least
one legal move open to the fox (or else the
geese win) in Line 1032.

If the player is controlling the geese, Lines
1050 to 1070 take the input and check its
legality. If, on the other hand, the computer is
controlling the fox, Lines 1110 to 1112 look

after the move. The number of plies that the
program is looking at, M, and the current ply
being considered, L, are set up in Line 1110.
Lines 1120 to 1180 are a subroutine to
evaluate the best move.

Four arrays are used in the best move
subroutine: A contains the number of moves
still to try; V, the best result so far; P, the move
that yields that result; and F, the fox's
previous position.

MOVING THE GEESE

500 LET V=0: FOR C=1 TO 4: LET
G =G(C): FOR A=1 TO Z(G): LET
X=M(A,G): IF X< >F THEN IF NOT FN
X(X) THEN RETURN

502 NEXT A: NEXT C: LET V=1:
RETURN

1200 GOSUB 310: GOSUB 250
1202 IF F> 28 THEN PRINT AT 21,0;

"THE FOX HAS WON 000
❑❑❑❑❑❑❑❑❑❑❑❑❑ ":
GOTO 1410

1204 GOSUB 500: IF V THEN PRINT AT
21,0;"THE FOX HAS WOND ❑ ❑ 111 ❑

11101=11111EIDEOGIO1=1":GOTO
1410

1210 IF PG THEN GOTO 1310
1220 INPUT "WHICH GOOSE TO MOVE ? ";G:

IF G= —1 THEN GOSUB 2710: GOTO
1202

1230 LET C= FN Z(G): IF C=0 THEN PRINT
AT 21,0;"NO GOOSE AT ";G;"": GOTO
1220

1240 INPUT "WHERE TO ";I: IF I= —1 THEN
GOSUB 2710: GOTO 1202

1250 IF FN X(I) THEN PRINT AT 21,0;
"NOT ONTO ANOTHER GOOSE
111000D000": GOTO 1220

1260 IF I= F THEN PRINT AT 21,0;
"NOT ONTO FOXI=1000111111 D
❑ ID ❑ EUCIE 1110001=1":
GOTO 1220

1270 FOR A=1 TO Z(G): IF M(A,G) = I THEN
LET G(C)= I: GOTO 1010

1280 NEXT A: PRINT AT 21,0;"THAT
IS NOT LEGAL ❑ ❑ ❑ ❑ El
E111111111111000": GOTO 1220

1310 LET L = SG: LET M=SG: LET
V(M) = WM: IF M>4 THEN DIM
R(HF+3): DIM S(HF+3)

1312 GOSUB 1320: GOTO 1020
1320 IF L=1 THEN GOTO 510
1322 IF L<M-2 THEN GOSUB 1610: IF

V< >0 THEN RETURN
1324 LET L= L-1: LET V(L)=FL: LET C=1
1330 LET C(L)=C: LET F(L)=G(C): LET

A(L) =1: IF A(L) > Z(G(C)) THEN GOTO
1362

1340 LET B= M(A(L),F(L)): LET X = FN X(B):
LET G(C) = B: IF X OR B = F THEN GOTO
1360

1350 GOSUB 1120: LET C=C(L): IF V<V(L)
THEN LET V(L) = V: LET
P(L) = G(C) + C*32

1355 IF V<V(L) THEN LET G(C)= F(L): LET
L=L+1: RETURN

1360 LET A(L)=A(L)+1: IF

A(L) < =Z(F(L)) THEN GOTO 1340
1362 LET G(C)=F(L): LET C=C+1: IF

C <5 THEN GOTO 1330
1370 LET V=V(L): LET L=L+1: IF L=M

THEN LET C= INT (P(L —1)/32): LET
G(C) = P(L —1) —C*32: GOSUB 210:
RETURN

1372 IF L<M-2 THEN GOSUB 1510:
RETURN

1380 RETURN

500 V= —1:FORC=1T04:G=G(C):IF
Z(G) <0THENNEXT:RETURN

502 FORA= 0TOZ(G):X = M(A,G):V=VAND
(FNX(X)ORX= F):NEXT:NEXT:RETURN

1200 GOSUB310:GOSUB250
1202 IFF>27THEN PRINTTAB(8);

"THE FOX HAS WON":
GOT01410

1204 GOSUB500:IFVTHEN PRINT
TAB(8);"THE FOX HAS WON":
GOT01410

1210 IF PG THEN PRINTTAB(8);
"THINKING...":G0T0 1310

1220 INPUT"P_IPMPIPMMI
WHICH G00SE T0 M0VE";G

1225 G0SUB 340
1230 C= FNZ(G):IFC=OTHENPRINT

TAB(8);"N0 G00SE AT";G:
G0T01220

1240 INpuT"Inipipipipipipi
WHERE T0";I

1245 G0SUB 340:IF I= -I THEN
PRINTTAB(8);"THE F0X HAS
W0N":G0T01410

1250 IFFNX(I)THEN PRINTTAB(8);
"N0T 0NT0 AN0THER G00SE":
G0T01220

1260 IFI = FTHEN PRINTTAB(8);
"N0T 0NT0 F0X":
G0T01220

1270 F0RA= -1T0Z(G):IFA> =0THENIF
M(A,G) = ITHENG(C) = I:
G0T01010

1280 NEXTA:PRINT TAB(8);"THAT IS N0T
LEGAL":G0T01220

1310 L=SG:M =SG:V(M) = WM:IFM > 4
THENF0RA =0T0HF:
R(A) = 0:NEXTA

1312 G0SUB1320:G0T01020
1320 IFL=1THEN510
1322 IFL < M - 2THENG0SUB1610:IFV< > 0

THENRETURN
1324 L=L-1:V(L)=EL:C -=1
1330 C(L)=C:F(L)=G(C):A(L)= 0:IF

A(L)>Z(G(C))THEN1362
1340 B=M(A(L),F(L)):X= FNX(B):G(C) = B:

IFX0RB=FTHEN1360
1350 G0SUB1120:C=C(L)
1355 IFV<V(L)THENV(L)=V:P(L)=G(C)+

C*32:IFV<V(L +1)THENG(C) = F(L):
L=L+1:RETURN

1360 A(L)=A(L)+1:IFA(L)< =Z(F(L))THEN
1340

1362 G(C)=F(L):C=C+1:IFC<5THEN1330
1370 V= V(L):L = L+1:IFL= MTHENC= INT

(P(L - 1)/32):G(C) = P(L - 1)AND31:
G0SUB210:RETURN

1372 IFL< M -2THENG0SUB1510:
RETURN

1380 RETURN

500 V= -1:F0R C=1T04:G -=G(C):IF
Z(G) < 0 THEN NEXTC:RETURN

502 F0R A=0 T0 Z(G):X=M(A,G):
V=V AND (FNX(X) 0R X= F):NEXTA:
NEXTC:RETURN

1200 G0SUB310:G0SUB250
1202 IF F>27 THEN PRINT TAB(8);

"THE F0X HAS W0N":G0T01410
1204 G0SUB 500:IF V THEN PRINT

TAB(8);"THE F0X HAS W0N":G0T01410
1210 IF PG THEN PRINT TAB(8);

"THINKING...":G0T01310
1220 INPUTTAB(8)"WHICH G00SE T0

M0VE ❑ G:IF G= -1 THEN
G0SUB2710: G0T01202

1230 C=FNZ(G):IFC= 0 THEN PRINT
TAB(8);"N0 G00SE AT ❑ ";G:G0T0 1220

1240 INPUT TAB(8)"WHERE T0", I
1250 IFFNX(I) THEN PRINTTAB(8);

"N0T 0NT0 AN0THER G00SE":
G0T0 1220

1260 IFI = F THEN PRINT TAB(8);
"N0T 0NT0 F0X":G0T01220

1270 IF Z(G) > =0 THEN A=0:
REPEAT:IF M(A,G) < >I THEN
A=A+1:UNTIL A>Z(G):ELSE UNTIL
TRUE:G(C)=1:G0T01010

1280 PRINTTAB(8);"THAT'S N0T
LEGAL":G0T01220

1310 L=SG:M=SG:V(M)= WM:
IFM > 4 THEN F0R A=0 T0 HF:
R(A)= 0:NEXTA

1312 G0SUB1320:G0T01020
1320 IFL =1 THEN510
1322 IF L<M -2 THEN G0SUB1610:

IFV< >0 THEN RETURN
1324 L= L-1:V(L) = FL:C=1
1330 C(L) = C:F(L) = G(C):A(L) = 0:IF

A(L)>Z(G(C))THEN1362
1340 B=M(A(L),F(L)):X=FNX(B):

G(C) = B:IF X 0R B=F THEN 1360

1350 G0SUB1120:C=C(L):IFV<V(L)THEN
V(L) = V:P(L) = G(C) + C*32:IF
V<V(L+1) THEN G(C)=F(L):L=L+1:
RETURN

1360 A(L)=A(L)+1:IFA(L)< =Z(F(L))
THEN1340

1362 G(C)=F(L):C=C+1:IF C<5 THEN
1330

1370 V=V(L):L=L+1:IFL=M THEN
C= INT(P(L-1)/32):G(C)= P(L -1) AND
31:G0SUB210:RETURN

1372 IFL<M -2 THEN G0SUB1510:
RETURN

1380 RETURN

500 V= -1:F0RC=1T04:G=G(C):IF
Z(G) <OTHENNEXT:RETURN

502 F0RA =0T0Z(G):X= M(A,G):V = V AND
(FNX(X)0RX= F):NEXTA,C:RETURN

1200 G0SUB250:XX=FNXX(F):
YY=FNYY(F)+5:PUT(XX,YY)- (XX +19,
YY + 8),FX,PSET

1202 IF F>27THENPLAYV$:PRINT
@6,"THE F0X HAS W0N":
G0T01410

1204 G0SUB 500:IFV THEN PLAYV$:
PRINT"THE F0X HAS W0N":
G0T01410

1210 LINE(180,0)-(255,191),PRESET,BF:IF
PG THENDRAW"BM180,50C4"+TH$:
G0T01310

1220 XX= FNXX(G(1)):YY=FNYY(G(1)):
DRAW"BM180,80C2"+WG$:G0SUB1810

1225 G = 4*1NT(YY/20):G = FNCN(G)
1230 C=FNZ(G):IF C=0 G0SUB5000:

G0T01210
1240 DRAW"BM180,110C3"+ MW$:G0SUB

1810:1 = 41NT(YY/20):I= FNCN(I)
1245 IF 1=1 THENPLAYV$:PRINT@7,

"THE F0X HAS W0N":G0T01410
1250 IFFNX(I) G0SUB5000:G0T01210
1260 IFI = F G0SUB5000:G0T01210
1270 F0RA= -1T0Z(G):IFA> =0 THENIF

M(A,G)= I THENXX=FNXX(G(C)):
YY=FNYY(G(C)):PUT(XX,YY)- (XX + 19,

YY+ 19),SQ,PSET:G(C) = I:XX= FNXX(I):
YY= FNYY(I):PUT(XX,YY+ 5) — (XX +19,
YY+14),GS,PSET:A=Z(G):NEXT:
GOT01010

1280 NEXT:GOSUB5000:GOT01210
1310 L=SG:M =SG:V(M)=1-1 * M:IFM >4

THENFORA =0TOHF:R(A) =0:NEXT
1312 GONB1320:GOT01020
1320 IFL =1 THEN510
1322 IFL<M-2 GOSUB1610:IF V< >0

THEN RETURN
1324 L=L-1:V(L)=E" LC =1
1330 C(L)= C:F(L)=G(C):A(L) =0:IF

A(L) > Z(G(C)) THEN1362
1340 B= M(A(L),F(L)):X= FNX(B):G =G(C):

G(C)= B:IF X ORB= F GOT01360
1350 GOSUB1120:C=C(L):IFV<V(L)THEN

V(L) = V:P(L) = G(C) + C * 32:IF
V < V(L + 1)THENG = G(C):G(C) = F(L):
L=L+1:RETURN

1360 A(L)=A(L)+1:IFA(L)< =Z(F(L))
THEN1340

1362 G=G(C):G(C)=F(L):C=C+1:IFC<5
THEN1330

1370 V=V(L):L=L+1:IFL=M THENC= INT
(P(L — 1)/32):G = G(C):G(C) = P(L — 1)
AN D31:GOSUB210: RETURN

1372 IFL<M-2 GOSUB1510
1380 RETURN

The routine from Line 1200 to Line 1380
handles the geese. There are subroutines for
when the player controls the geese—lines
1220 to 1290—and when the computer con-
trols the geese—Lines 1320 to 1380.

BEST MOVES

410 LET V= H: FOR A =X(F) TO 1 STEP —1:
LET X= M(A,F): IF FN X(X) THEN NEXT A:
LET L=1: RETURN

420 LET B=F: LET F =X: GOSUB 210: LET
V = P: LET F= B: LET L=1: RETURN

510 LET V= E: FOR C=1 TO 4: LET
G =G(C): IF — B(G) >V THEN GOTO 530

520 FOR A=1 TO Z(G): LET X= M(A,G): IF
FN X(X) OR (X= F) THEN NEXT A: GOTO
530

528 LET V= B(X)— B(G): LET D=C: LET
B =X

530 NEXT C: LET G=G(D): LET G(D)=B:
GOSUB 210: LET V= P: LET G(D)=G:
RETURN

410 V = H:FORA= X(F)TO0STEP — 1:
X= M(A,F):IFFNX(X) <0THENNEXT:L =1:
RETURN

420 B= F:F=X:GOSUB210:V= P:F= B:
L=1:RETURN

510 V= E:FORC=1T04:G =G(C):IF
— B(G)>VTHEN530

520 FORA= 0TOZ(G):X= M(A,G):IFFNX(X)
ORX= FTHENNEXT:GOT0530

528 V = B(X) — B(G):D = C:B = X
530 NEXTC:G = G(D):G(D) = B:GOSUB210:

V= P:G(D) = G:RETURN

410 V= H:A=X(F):REPEAT:X= M(A,F):IF
FNX(X) <0 THEN A= A —1:UNTIL A<0:
L=1:RETURN

420 UNTILTRUE:B= F:F = X:GOSUB 210:
V= P:F= B:L=1:RETURN

510 V= E:FOR C=1T04:G = G(C):IF
— B(G) > V OR Z(G) <0THEN 530

520 A= 0:REPEAT:X= M(A,G):IF FNX(X) OR
(X= F) THEN A=A+ 1:UNTIL A > Z(G):
GOT0530

528 UNTILTRUE:V= B(X) — B(G):D=C:B =X
530 NEXTC:G=G(D):G(D)= B:GOSUB 210:

V= P:G(D)=G:RETURN

410 V= H:FORA=X(F)T00 STEP-1:
X= M(A,F):IFFNX(X) <0 THENNEXT:L =1:
RETURN

420 B= F:F=X:GOSUB210:V= P:F= B:
L = 1:A = 0:NEXT:RETURN

510 V= E:FORC=1T04:G =G(C):IF
— B(G) > V THEN530

520 FORA = 0TOZ(G):X = M(A,G):IFFNX(X)
OR X= F THENNEXT:G0T0530

528 V= B(X)— B(G):D=C:B =X
530 NEXT:G=G(D):G(D)= B:GOSUB210:

V= P:G(D) = G:IFSG =1 THENG(D)= B:
C=D

540 RETURN

These subroutines are concerned with the
`one mover'—in other words, at this stage the
computer is only looking one move ahead
when searching for the best move.

Lines 410 and 420 go through all the
possible moves open to the fox, using the map
array M, set up in the subroutine starting at
Line 2110 (see earlier). The subroutine re-
turns a value of P, configuration after best
move, and V, evaluation after best move.

Lines 510 and 530 are a similar routine,
but this time it looks for the best move for the
geese. P and V are set in the same way as in the
previous subroutine.

In either case, GOSUB 210 picks the best
move from those evaluated.

THE HASH CODE TABLE

1510 GOSUB 210: LET C= P
1520 LET C= C — INT ((C/HF+C)—C)*liF:

IF C<0 OR C> =HF THEN GOTO 1520
1550 FOR A= C +1 TO C+4: IF R(A) < >0

AND R(A) < > P THEN NEXT A: RETURN
1560 LET R(A)= P: LET S(A) =V: RETURN

1610 GOSUB 210: LET C=P
1620 LET C=C— INT ((C/HF+C)—C)*HF:

IF C<0 OR C> =HF THEN GOTO 1620
1650 FOR A=C+1 TO C+4: IF R(A)< >0

AND R(A) < >P THEN NEXT A: LET
V=0: RETURN

1660 LET V= S(A) * (R(A) = P): RETURN

1510 GOSUB210:C=P
1520 C = C — INT((C/HF + C) — C)*HF:IFC <0

ORC> =HFTHEN1520
1550 FORA = CTOC + 4:IFR(A)< >0AND

R(A) < > PTHENNEXT:RETURN
1560 R(A)=P:S(A) = V:RETURN
1610 GOSUB210:C=P
1620 C=C—INT((C/HF+C)-FC<0__

ORC> =HFTHEN1620
1650 FORA =CTOC + 4:IFR(A)< >0AND

R(A)< >PTHENNEXT:V=0: RETURN
1660 V= —S(A)*(R(A)=P): RETURN
2500 DIM(1999), S(1999)

LI
1510 GOSUB 210:C=P
1512 IF ABS(C/HF) >1E9 THEN

C=C—((C/HF+C)—C) * HF:
G0T01512

1520 C=C—INT((C/HF+C)—C)*HF:
IF C<0 OR C> =HF THEN 1520

1550 A= C:REPEAT:IF R(A) < >0 AND
R(A)< >P THEN A=A+1:UNTIL
A= C +4:RETURN:ELSE UNTIL TRUE

1560 R(A)=P:S(A)=V:RETURN
1610 GOSUB 210:C=P
1612 IF ABS(C/HF) >1E9 THEN

C= C— ((C/HF +C)—
GOT01612

1620 C=C—INT((C/HF+C)—C)*HF:
IF C<0 OR C> =HF THEN 1620

1650 A = C:REPEAT:IF R(A(< > 0 AND
R(A) < >P THEN A=A+1:UNTIL
A = C + 4:V = 0:RETURN:ELSE UNTIL
TRUE

1660 V= — S(A)*(R(A) = P):RETURN

1510 GOSUB210:C=P
1520 C = C— INT((C/HF + C) — C)*HF:IFC <0

ORC> =HF THEN1520
1550 FORA= C TOC+C:IFR(A)< >0AND

R(A) < > PTHENNEXT:RETURN
1560 R(A)=P:S(A) = V:A = C + C:NEXT:

RETURN
1610 GOSUB210:C=P
1620 C= C — INT((C/HF + C) — 	<0

ORC> =HF THEN1620
1650 FORA= C TOC+C:IFR(A)< >0 AND

R(A) < >P THENNEXT:V=0:RETURN
1660 V= —S(A)*(R(A)= P):A = C + C:NEXT:

RETURN

1810 SCREEN1,0:PUT(XX,YY) — (XX + 19,
YY + 19),SQ,NOT:FORZ = 1T0100:NEXT

1820 PUT(XX,YY) — (XX +19,YY + 19),SQ,
NOT

1830 K$=INKEY$:IF K$="T" AND YY > 8
AND XX> 8 THEN YY =YY —20:XX=
XX — 20:GOT01810

1840 IF K$=CHR$(10) AND YY <129 AND
XX <129 THEN YY =YY + 20:
XX= XX+ 20:GOT01810

1850 IF K$=CHR$(8) AND XX> 28 THEN
XX= XX-40:GOT01810

1860 IF K$=CHR$(9) AND XX<128
THENXX= XX + 40:GOT01810

1870 IF K$=CHR$(13) THEN RETURN
1875 IF K$="Q" THEN YY =0:XX = —12:

RETURN
1880 GOTO 1810

In the higher levels of play, you'll want to
apply the alpha-beta algorithm—see page
1098. In fact, you've already entered the
algorithm as part of Fox's move and Geese
move routines. Before the algorithm is ap-
plied, they check if it is appropriate to use the
algorithm—is the chosen level of play suffi-
ciently high to warrant its use?

The routine from Line 1110 to Line 1150

looks after the fox, while the routine from
Line 1310 to 1350 looks after the geese.

The algorithm is applied in the last IF test
at the end of Lines 1150 and 1350, after V(M)
has been set to the appropriate level in Lines
1110 and 1310.

The alpha-beta algorithm is most efficient
if the computer considers what are likely to be
the best moves first—for the geese, the
highest-numbered square in each row of four
squares, and for the fox, the square open to it
that is nearest the geese end.

The alpha-beta algorithm is used in con-
junction with a technique known as hash-
coding to build up and use a table of the moves
already considered. Hash-coding allows the
computer to check quickly if the move has
already been considered. The larger the hash-
code table that can be built into the program,
the faster-running that program should be.

The table is initialized in Lines 2500, 2750
and 2800. There are theoretical 'best values'
for the dimensions of the arrays holding the
tables—Line 2500. The arrays have been
DI Mensioned to as large as possible, given the
available RAM in each of the machines.

The table is zeroed in Lines 1110 and
1310, the contents are checked in Lines 1122
and 1322, and set in Lines 1172 and 1372.
The checking subroutine starts at Line 1610,
and the setting subroutine starts at Line 1510.
BBC owners with disk filing systems should
enter the following before RUNning.

*TAPE
FOR A%= 0TO&1600:?(&E00 + A%) = ?

(PAGE + A%):NEXT
PAGE = &E00
OLD
RUN

The Dragon/Tandy game uses a flashing
cursor to move the pieces. Move it to the
square or piece you wish and press I RETURN in
response to the prompts to the right of the
screen.

What are the chances of your
selection scoring a big win on the
football Pools this weekend? You
might not improve your luck, but
may understand why you've lost

Instructing a novice at the controls of a
modern jetliner or a fighter-bomber would be
wastefully expensive, when factors such as
fuel, landing fees and back-up facilities are
taken into account. This is why military
authorities find it cheaper to expend large
sums for trainer aircraft and simulators—
computer controlled mock-ups that never
leave the ground, but give a trainee a realistic
impression of flying.

The same principle holds true in a large
number of circumstances—including games
programming, industrial development and
marketing, scientific research and govern-
ment. It is better to program a computer to
predict the probable result of structural fai-
lure, or of a particular economic policy, for
example, than to do the actual experiment,
which might last five years or even more in
some circumstances. Not surprisingly, simul-
ations are a useful and favoured facility. But
their complexity means that they were only
really made possible by the advent of com-
puters. Now, even the home micro can make
light work of simulation.

One of the chief tools of such computer
modelling is the set of rules provided by the
mathematical study of probability. In this
context, you may find it helpful to look back
to the article on pages 694 to 700, which
explains some of the theory behind this. The
rest of the model comes from an analysis of
statistical information, gathered from a sur-
vey of the real situation.

Given a few simple rules, the home micro
user can conjure up alternative futures for a
host of different events, but the reliability of
the results depend on the accuracy of the .data
fed into the program or the precision of the
rules by which the game is played. This fact
can be demonstrated by a simulation of the
outcome of football matches.

Every Saturday afternoon during the soc-
cer season, millions of pools punters eagerly
await the football results and the chance of a
bumper first dividend. Sadly, all but a few are
disappointed, and must wait for another week
and another chance. If you don't want to wait
for a whole week, then key in the first
program and try your luck as many times as
you like:

10 POKE 23658,0
20 DIM a(55): DIM r$(4,14)
30 BORDER 0: PAPER 0: INK 7: CLS
50 PRINT AT 0,7; INVERSE 1;

"CI ❑ TREBLE CHANCED ❑ "
60 PRINT : PRINT
80 PRINT "LI DHOW MANY SELECTIONS

FROM 55 ❑ ❑ 	❑ MATCHES DO YOU
WISH TO MAKED ❑ D ❑ El DDOD
D DOD D(8-16)"

90 INPUT n
95 IF n <1 OR n >16 THEN CLS : GOTO 80
100 PRINT : PRINT "DWHAT ARE THE

NUMBER OF MATCHES ❑ ❑ THAT YOU
WISH TO SELECT (1 —55)"

120 FOR k =1 TO n
130 INPUT a(k)
140 NEXT k
150 CLS
160 PRINT FLASH 1; PAPER 2;AT

10,6;" ❑ MATCHES IN PROGRESS ❑ "
170 FOR v=1 TO 2000: NEXT v
180 CLS
190 PRINT AT 0,10; INVERSE 1;

"IIIIIIRESULTS1710""
200 LET r$(1)="HOME WIN": LET

r$(2) = "AWAY WIN"
210 LET r$(3) ="GOAL — LESS DRAW": LET

r$(4) = "SCORE DRAW"
220 FOR i =1 TO n
230 LET y=RND * 1
240 IF y< = .5 THEN LET z$=r$(1)
250 IF y> .5 AND y< =.75 THEN LET

z$=r$(2)
260 IF y>.75 AND y< =.9 THEN LET

z$=r$(3)
270 IF y> .9 THEN LET Z$=r$(4)
280 PRINT "MATCH NUMBER";TAB

14;a(i);TAB 18;z$
290 NEXT i
300 PRINT : PRINT
310 INPUT "DO YOU WANT ANOTHER GO

?D";t$
320 IF t$="n" THEN GOTO 340
330 GOTO 30
340 STOP

20 DIM A(55),R$(4)

50 PRINT "mg > plaTREBLE CHANCE"
80 PRINT"ggpiPJHOW MANY SELECTIONS

FORM 55 DO YOU":PRINT"WISH TO
MAKE"

90 INPUT"(8 — 16)",N
100 PRINT "ggpjWHAT ARE THE NUMBERS

OF THE MATCHES"
110 PRINT "THAT YOU WISH

TO":PRINT"SELECT (1 —55)"
120 FOR K=1 TO N
130 INPUT A(K)
140 NEXT K
160 PRINT "ogg> MalMATCHES IN

PROGRESS"
170 FOR V=1 TO 2000:NEXT V
190 PRINT "ogg> Pig/RESULTS"
200 R$(1)="HOME WIN":

R$(2) = "AWAY WIN"
210 R$(3) = "GOAL— LESS DRAW":

R$(4) = "SCORE DRAW"
220 PRINT "ggMATCH":FOR 1=1 TO N
230 Y=RND(1)
240 IF Y< =0.5 THEN Z$=R$(1)
250 IF Y>0.5 AND Y< =0.75 THEN

Z$ = R$(2)
260 IF Y>0.75 AND Y< =0.9 THEN

Z$ = R$(3)
270 IF Y > 0.9 THEN Z$=R$(4)
280 PRINT A(I)TAB(6)Z$
290 NEXT I
310 PRINT"g1D0 YOU WANT ANOTHER GO

(YIN)?";
320 GET T$:IF T$="N" THEN

PRINT"0":END
330 IF T$="Y" THEN RUN
340 GOTO 320

20 DIM A(55),R$(4)
50 MODE1:PRINTTAB(14,3)

"TREBLE CHANCE"
80 PRINT""HOW MANY SELECTIONS FROM

55 MATCHES DOD ❑ YOU WISH TO
MAKE (8-16)? "

90 INPUT N
100 PRINT"WHAT ARE THE NUMBERS OF

THE MATCHES'""THAT YOU WISH TO
SELECT (1 —55)?"

120 FOR K=1 TON
130 INPUTA(K)
140 NEXT

160 PRINTTAB(11)"MATCHES
IN PROGRESS"

170 D=INKEY(500)

190 CLS:PRINTTAB(17,3)
"RESULTS"

200 R$(1)="HOME WIN":

RULES OF THE GAME
SCORING

DECIDING RESULTS
SELECTING NUMBERS FROM

A HAT OR BOX

GENERATING RANDOM NUMBERS
TYPES OF RANDOM NUMBER

SAMPLES AND SURVEYS
SAMPLING

SINGLE-PASS SEARCH

R$(2) = "AWAY WIN"
210 R$(3) = "GOAL — LESS DRAW":

R$(4) = "SCORE DRAW"
220 FOR 1=1 TO N
230 Y=RND(1)
240 IF Y< =.5 THEN

Z$= R$(1)
250 IF Y>.5 AND Y< =.75 THEN

Z$=R$(2)
260 IF Y>.75 AND Y< =.9 THEN

Z$ = R$(3)
270 IF Y>.9 THEN

Z$=R$(4)
280 PRINT"MATCH NUMBER Ill";

A(I)TAB(20)Z$
290 NEXT
310 INPUT""DO YOU WANT ANOTHER

GO",G$
320 IF G$="N" THEN END
330 GOTO 50

20 DIM A(55)
30 CLS
50 PRINT@9,"treble chance"
60 PRINT:PRINT
80 INPUT"HOW MANY SELECTIONS FROM

55 ❑ 01111110MATCHES DO YOU WISH
TO MAKE III 	❑ ❑ (8 —13)";N

90 IF N<8 OR N >13 THEN 80
100 PRINT"WHAT ARE THE NUMBERS OF

THEO ❑ CI ❑ IIIMATCHES THAT YOU
WISH TO SELECT (1 —55)11I"

110 T=0
120 FORK =1 TO N
130 INPUT A(K)
140 NEXT K
150 CLS
160 PRINT@262,"matches in progress"
170 FOR V=1 TO 2000:NEXT V
180 CLS
190 PR I NT@12,"results"
220 FOR 1=1 TO N
230 Y=RND(0)
240 IF Y< =.5 THEN Z$="HOME WIN"
250 IF> .5 AND Y< =.75 THEN Z$ = "AWAY

WIN"
260 IF Y>.75 AND Y< =.9 THEN

Z$ = "GOAL — LESS DRAW"

270 IF Y > .9 THEN Z$=
"SCORE DRAW"

280 PRINT"MATCH NUMBER ";
A(1);TAB(17);Z$

290 NEXT I
300 PRINT:PRINT
310 INPUT"DO YOU WANT ANOTHER GO

(Y/N) ";T$
320 IF T$= "N" THEN END
330 GOTO 30

There are no first dividends in this football
simulation, but it may sharpen your feel for
the real thing. In any event, it will
demonstrate just how small is the chance of
getting 24 points.

RUN the program, and choose a number of
matches between 8 and 16 in the range 1 to 55*
This is equivalent to placing an X against the
games chosen as likely draws. The results for
the games you selected are then displayed on
the screen. Scoring three points for a score
draw, two for a no-score draw, one-and-a-half
for an away win and one for a home win, the
best eight matches in a typical selection would
yield a total of only about 15 points—not a
good start.

In January and February, bad weather
sometimes forces matches to be cancelled.
When this happens, a panel of football experts
decides how the results would have turned
out if the games had actually taken place. In
fact, both the program and the panel are
simulators—they provide a symbolic repre-
sentation of a real process*

The program is not particularly difficult*
After matches have been selected (Lines 120
to 140) the main part of the simulation (Lines
220 to 290) decides the outcome of each
match, and prints the results*

DECIDING RESULTS
The basis on which the computer decides to
print 'score draw', 'no-score draw', or another
result, is the old pools punter's rule—that a
half of the matches played turn out to be home
wins, a quarter away wins, and the remaining
quarter result in draws. It has been assumed
that the number of ties is divided between
score draws and no-score draws in the ratio
two to three. This ratio gives factors of I and 5*
When multiplied by 4, the values are 0*1 and
0.15, so that the probability (see pages 694 to
700) of a score draw is 0*1*

It is worth noting that previously, each
match had only three possible results (home
win, away win and draw)* Then, the total
number of different possible outcomes of
eight matches were three to the power eight,
or 6561. The introduction of a score draw
category increased this dramatically to (418)

or 65,536. If the chance of choosing a score
draw is 1 in 10 (0.1), then the odds against
picking eight score draws in eight matches is 1
to 100 million, which is most discouraging*

Choosing numbers in the treble chance is
similar to deciding who wins a raffle* Usually,
the tickets are placed in a large box or a hat,
and someone, without looking, picks out theA
lucky number* The allocation of horses in
the office Derby sweepstake can be organ-
ized in a similar fashion, and the method A
is termed top hat simulation*

Suppose a piece of paper is cut into
four quarters. On the first quarter, the
words 'away win' are written* 'Draw'
is written on the second quarter and
the other two pieces of paper bear
the message 'home win'* Now, if the
four pieces of paper are folded and
placed in a top hat, picking a piece of
paper at random is equivalent to decid-
ing the outcome of a football match.
The process would be just as effective
if one each of the numbers 1, 2, 3 and
4 had been written on the four pieces of
paper. The outcome could then have bee..
decided by referring to a table:

Number drawn Result
1, 2 	home win
3 	 away win
4 	 draw

Similarly, when score draws are taken into
account, if 40 pieces of paper bearing one each
of the numbers 1, 2, *.* 40 are placed in the
top hat, the result of picking out a particular
piece of paper can be interepted according to
the following table:

Number drawn Result
1 to 20 	 home win
21 to 30 	 away win
31 to 36 	 no-score draw
37 to 40 	 score draw

The BASIC function RND, which generates
random numbers, gives a computation
equivalent to picking numbers out of a hat.
You can specify that RN D generates a number
which is equally likely to take any value
between 0 and 1* It only remains to rewrite
the table in decimal format:

Value of RND 	 Result
from 0 to 0.5 	 home win
greater than 0*5 to 0*75 	away win
greater than 0*75 to 0*90 	no-score

draw
greater than 0*90 to 1.00 	score draw

These are the actual values that are coded at
Lines 230 to 270 in the program above.

The treble chance simulation is only as
good as the probability estimate used in the
program. You could collect your own data
from the Sunday papers, for example, and
decide whether a greater proportion of score
draws, say, is more usual*

GENERATING RANDOM NUMBERS
Many years ago, manual or mechanical
methods, such as dice throwing, card-
shuffling or the spinning of a roulette wheel,
were used to generate random numbers.
These methods were slow and tedious, so the
famous American mathematician, John Von
Neuman, proposed a mid-square technique.
Starting with a four-digit number (the seed),
the next 'random number' is obtained by
multiplying the seed by itself, and then taking
the middle four digits. For example, suppose
the seed is 5272* Then the second number can

be generated by taking the middle four digits
of (527212) or 27,793,984* The answer (7939)
is, practically, random. A second number can
be obtained by squaring 7939, and so the
process continues.

How, you may ask, can any mathematical
process—which must be repeatable—produce
true random numbers? The answer is that it
can't* The numbers so obtained, however,
behave as though they are random, and are
usually referred to as pseudo-random or
quasi-random. Numbers generated by using
RND are, in fact, pseudo-random. Unfortu-
nately, the mid-square technique is not very
useful for generating random numbers by
computer*

Besides being slow, the sequence quickly
repeats, and once a zero is obtained, the whole
process ends* Most home micros use a con-
gruence method which uses remainders to

generate pseudo-random sequences. The next
program uses a simple formula and the INT
(integer) function to provide an example of
this:

20 BORDER 0: INK 7: PAPER 0: CLS
L30 PRINT AT 0,4; INVERSE 1;

" PSEUDO-RANDOM NUMBERS 0'
40 INPUT "0 HOW MANY NUMBERS

? ❑ ";n: LET s=0
50 LET x=*677829*PEEK 23673/50
60 LET x = x*1842.95
70 LET x=x — INT (x)

80 LET p= INT (x*1000): PRINT
"0 0E0 0";.001*p,

90 LETs=s+1
110 IF s< =n THEN G0T0 60
120 STOP

30 PRINT"El >PJAPSEUDO
—RND NUMBERSM"

40 PRINT"HOW MANY NUMBERS":
INPUT N

50 X = .677829*TI/60
60 X = X*1842*95
70 X = X — INT(X)
80 P=INT(X*1000):PRINT .001*P,
90 S = S + 1

110 IF S< =N THEN 60

11
30 MODE1:PRINTTAB(8,3)

"PSEUDO—RANDOM NUMBERS"
40 INPUT"HOW MANY NUMBERS",N:

S=0
50 X = *677829*(TIME/100 — INT

(TIME/100))
60 X = X*1842.95
70 X = X —INT(X)
80 P=INT(X*1000):PRINT*001*P;
90 S = S +1
1101F S< =N THEN 60

MU!
20 CLS
30 PRINT@3,"pseudo-random numbers"
40 INPUT"HOW MANY NUMBERS ❑ ";

N:S =0
50 X= *677829*TIMER/50
60 X = X*1842*95
70 X= X — INT(X)
80 P=INT(X*1000):PR1NTLEFT$

(STR$(P/1000) + "0 ❑ ❑ ❑
❑ ❑ ❑ ",8);

90 S S +1
110 IF S< =N THEN 60
120 END

Line 50 uses the computer time function to

set a different seed value for each run. The
number *677829 is a fairly arbitrary constant.
After the start value has been multiplied by
another constant (Line 60), the remainder or
decimal part is obtained. Change the value of
the constants at Lines 50 and 60, and RUN the
program again to see what sort of results you
obtain*

For most purposes, it is wise—and far
simpler—to use the RND function provided
by your own computer* Varying the value of x
in the expression R ND(x) will usually enable
you to select a repeatable sequence which is
good for testing or to re-seed each time*

Perhaps the most important point to re-
member when writing programs is that the
function RND provides a random variable and
not an algebraic variable* RN D (1)—or RND(0)
on the Dragon and Tandy—listed at one line
of a program will not take the same value as
RN D(1) listed elsewhere*

SAMPLES AND SURVEYS
Political opinion polls, consumer research
organizations and governments use com-
puters to generate random samples. It is
important, for example, that a market re-
search company interviewing 1000 people
gets a typically varied sample, representative
of a much larger group of the population* It
would not do, for example, to choose people
who were all members of a vintage car club, if
the survey was supposed to check the national
pattern of car ownership.

The best way to determine that a sample is
representative is to pick them randomly—this
excludes any particular bias*

This still holds true, even when you are
working with a smaller sample who do have a
particular common interest, like the members
of a vintage car club, or the readers of
INPUT* Selecting randomly is still import-
ant here, if, say, you wanted to determine the
spread of computer ownership of particular
computers amongst INPUT readers*

You may even wish to pick a sample from
your own computerized club membership
list. Basically, the sampling process is similar
to a top-hat simulation in which several pieces
of paper are picked from the hat* When
simulating, however, each piece of paper is
returned to the hat before the next is chosen.
In sampling, once a piece of paper has been
selected from the top hat, it is placed to one
side before the next is chosen. Enter the next
program to see how RND can be used to
generate a random sample:

10 DIM b$(10,16)
20 DIM a$(10,16)

30 BORDER 0: PAPER 0: INK 7: CLS
50 PRINT AT 0,7; INVERSE 1;

"El RANDOM SAMPLING El"
90 PAUSE 100: CLS
100 FOR i = 1 TO 10: READ a$(i): NEXT i
110 INPUT "IIISAMPLE SIZE ? ❑ ";n
120 FOR v=1 TO 10: LET b$(v)=a$(v):

NEXT v
130 FOR j =1 TO n
140 LET r = 1 + I NT (RND*10)
150 IFb$(0=" ❑❑❑❑❑❑❑❑

❑ 1111111111=1E1 E" THEN GOTO 140
160 PRINT b$(r)
170 LET b$(r)=""
180 NEXT j
190 INPUT "DANOTHER SAMPLE (y/n)

?111";g$
200 IF g$ = "y" THEN CLS : GOTO 110
210 STOP
220 DATA"BONN","COPENHAGEV,

"LONDON"
230 DATA "MADRID","MOSCOW","NEW

YORK"
240 DATA "PARIS","ROME","STOCKHOLM",

"VIENNA"

20 DIM A$(10)
50 PRINT "0 > P.J aRANDOM

SAMPLINGgggg"
100 FOR 1=1 TO 10:READ A$(I):

NEXT I
110 INPUT "SAMPLE SIZE";N:PRINT
120 FOR V=1 TO 10:8$(V)= A$(V):
NEXT V
130 FOR J=1 TO N
140 R=1 + INT(RND(1)*1 0)
150 IF B$(R) ="" THEN 140
160 PRINT B$(R)
170 B$(R)=""
180 NEXT J
190 PRINT "gg MANOTHER SAMPLE

(Y/N)?"
200 GET G$:IF G$="Y" THEN RUN
210 IF G$< >"N" THEN 200
215 PRINT"0"
220 DATA BONN,COPENHAGEN,LONDON
230 DATA MADRID,MOSCOW,NEW YORK
240 DATA PARIS,ROME,STOCKHOLM,

VIENNA

20 DIM A$(10),B$(10)
50 MODE1:PRINTTAB(13,3)"RANDOM

SAMPLING"
90 D=INKEY(300)
100 FOR 1=1 TO 10:READ A$(I):

NEXT
110 INPUT""SAMPLE SIZE 1-10",N
120 FOR V=1 TO 10:B$(V)=A$(V):

NEXT

130 FOR J =1 TO N
140 R = RND(10)
150 IF B$(R) ="" THEN 140
160 PRINTB$(R)
170 B$(R) =""
180 NEXT
190 INPUT""ANOTHER SAMPLE (Y/N)",G$
200 IF G$="Y" THEN 110
210 END
220 DATA BONN,COPENHAGEN,LONDON
230 DATA MADRID,MOSCOW,

NEW YORK
240 DATA PARIS,ROME,STOCKHOLM,

VIENNA

14Z
40 CLS
50 PRINT@8,"random sampling":

PRINT:PRINT
100 RESTORE:FOR I = 1 TO 10:

READ A$(1):NEXT I
110 INPUT"SAMPLE SIZE ❑ ";N:

PRINT
115 IF N>10 THEN 40
120 FOR V=1 TO 10:B$(V)=A$(V):

NEXT V
130 FOR J=1 TO N

MAKING PREDICTIONS
The simulation techniques described in
this article have many of the elements you
would need to devise a method of predict-
ing results of a game or to carry out a
survey. So it should be easy for you to
modify the programs, or use certain sec-
tions of them, in your own code. You
could, for example, write a program to

I decide which matches will result in a score
draw, then select eight of these matches at
random and compare your predictions
with actual results* This would require
sections of the 'treble chance' and the
`random sampling' programs, together
with a few lines to link them and keep track
of your selections. One use for such a
program would be to remove the tendency
for a person to choose matches on the
coupon according to the separation of the
numbers—they spread their choice at
almost regular intervals on the coupon. In
fact it could be interesting to compare both
methods of choosing which of the games
will produce the appropriate results.

140 R =1 + INT(RND(0)*1 0)
150 IF B$(R)=`"' THEN 140
160 PRINTB$(R)
170 B$(R)=""
180 NEXT J
190 PRINT:INPUT"ANOTHER SAMPLE

(Y/N) ❑ ";G$:PRI NT:PRINT
200 IF G$="Y" THEN 110
210 END
220 DATA BONN,COPENHAGEN,

LONDON
230 DATA MADRID,MOSCOW,

NEW YORK
240 DATA PARIS,ROME,STOCKHOLM,

VIENNA

After the data have been read in (Line
100), a random integer R between 1 and 10 is
generated (Line 140). Your computer will
then print the Rth item (Line 160) on the list.
Once an item has been selected, it must be
removed from the data bank so that it is not
selected a second time. Line 170 looks after
that job. Notice that you could use RN D(10) to
generate a random variable in the range 1 to
10, but the method shown at Line 140 follows
on from the use of decimal fractions to test the
range of probabilities.

Usually, the data population from which
the sample is drawn is far more extensive than
the ten items in this example. For sampling
such masses of data, the program above would
be slow and inefficient. Suppose, for instance,
a pollster wishes to pick 200 names from an
electoral roll of 60,000 voters in a particular
constituency, a program such as the one above
would need to search the entire list of electors
200 times. To avoid the long wait that this
would entail, it would be better to use a
single-pass method.

THE SINGLE-PASS SEARCH
The single-pass method would read through
the electoral roll once from top to bottom. As
each name is considered, a decision is made
whether to include that person in the sample.
This method can be programmed easily—
make the following changes to the last
program and reR UN it:

50 PRINT AT 0,1; INVERSE 1;
" ❑ SINGLE — PASS RANDOM
SAMPLING Ill"

120 LET a= n: LET c =10
130 FOR j=1 TO 10
140 IF a = 0 THEN GOTO 190
150 IF RND*1< =a/c THEN PRINT a$(j):

GOTO 170
160 LET c =c —1: GOTO 180
170 LET a = a —1: LET c c —1

[1:1
50 PRINT "cm] > pia SINGLE —

PASS "
60 PRINT "MN aRAND0M

SAMPLINGSgg gg"
120 A=N:C,=10
130 FOR J=1 TO 10
140 IF A=0 THEN 190
150 IF RND(1) ' < =A/C THEN PRINT

A$(J):GOTO 170
160 C = C —1: GOTO 180
170 A=A-1:C=C-1

50 MODE1:PRINTTAB(5,3)"SINGLE PASS
RANDOM SAMPLING"

120 A=N:C=10
130 FOR J=1 TO 10
140 IF A=0 THEN 190

150 IF RND(1)< =A/C THEN
PRINTA$(4A =A-1

160 C = C —1

Also delete Line 170

tgilH1
50 PRINT@2,"single-pass random

sampling": PRINT: PRINT
120 A=N:C=10
130 FOR J=1 TO 10
140 IF A=0 THEN 190
150 IF RND(0)< =A/C THEN

PRINTA$(J):GOT0170
160 C=C-1:GOTO 180
170 A=A-1:C=C-1

If now you enter 3, to select three items from
the list, the first item (Bonn) is considered
first. Should the function RND (Line 150) be

less than 3/10, Bonn is selected. Copenhagen
is considered next. If Bonn is already in the
selection, Copenhagen will have a chance of
being selected only if the function RND
generates a value of less than 2/9. On the other
hand, if Bonn is not already selected,
Copenhagen's chance will go up to 3/9. Lines
160 and 170 update the probabilities. When
you compare the results of selections from
this program with those from the previous
one, you should notice that the single-pass
method gives samples in alphabetical order.

At first sight, it might appear that with a
list of only ten cities, the number of possible
samples is small. This is not so. In fact, there
are 120 possible different samples of size
three, and 252 samples of size five. In a future
article, you can see how these ideas can be
developed and used in a type of simulation
referred to as modelling.

A surprising variety of patterns can
be produced using very simple
graphics routines that superimpose
curves or build up patterns of dots.
Here are a few ideas to try

The way in which computers can be used to
plot the orbit or trajectory of an object falling
under gravity was described in the articles on
pages 740 to 747 and 797 to 803. Such
programs illustrate the simplest aspects of the
old science of dynamics. Orbits can, however,
generate patterns much richer and more
interesting than the parabolas, circles and
ellipses in which projectiles and planets move.
This article will explain how some of these
patterns can be produced by very elementary
programming and graphics routines.

Nowadays dynamics is once again a
rapidly developing field of research. One
reason for this is the realization that there are
mathematical ideas underlying dynamics that
can be applied much more widely than simply
to the motion of bodies acted on by forces.
Optical scientists interested in the deviation
of starlight by refraction in the atmosphere,
industrial chemists studying the progress of a
reaction, and biologists concerned with the
growth of populations of competing species,
all find themselves using the mathematics of
dynamics. Another reason is that
computers—by enabling simple operations to
be repeated many times—have led to the
discovery of structural complexity often un-
suspected on the basis of the restricted calcul-
ations previously possible. A pattern or curve
may need to be drawn many, many times
before any structure begins to appear. The
programs below show how this can be done.

All the programs for the Commodore need
a Simons' Basic cartridge or INPUT's hi-res
utility. The programs for the Vic need a
Super Expander cartridge.

FAMILIES OF ORBITS
When assembled into a collection or family,
orbits that are individually simple can display
striking patterns. To see this for parabolas,
enter and RUN the first program.

5 LET A$=`"': FOR N=1 TO 64: LET
A$=A$+" ❑ ": NEXT N

10 BRIGHT 1: BORDER 0: INK 5: PAPER 0:
CLS

20 LET NMAX =81
30 LET DELT = .05

USING PATTERNS IN SCIENCE
FAMILIES OF ORBITS

ORBITS AND ENVELOPES
FOCUSING LINES AT CUSPS

CATASTROPHE THEORY

PATTERNS OF DOTS
DOT CURTAINS AND THE RINGS

OF SATURN
COMPLETE CHAOS

FISH POPULATIONS

40 LET SX=170/SQR 3: LET SY =175
50 FOR N=1 TO NMAX
60 LET A = Pr(—1 +2*N/NMAX)
70 PLOT 128,80
80 FOR T=0 TO 3 STEP DELT
90 LET X =MOS A: LET Y=T*(SIN A—T/2)
100 IF Y< = —.4 THEN GOTO 120
110 LET DX = SX*X +128: LET

DY=SrY +80
111 IF DX<0 OR DX>255 OR DY<0 OR

DY >175 THEN GOTO 120
115 DRAW DX—PEEK 23677,DY— PEEK 23678
117 PRINT AT 19,0;A$
120 NEXT T
130 NEXT N

10 HIRES 6,3:COLOUR 6,3
15 BLOCK 0,160,319,199,1
20 NM=81
30 DE = .05
40 SX=160/SQR(3):SY= 200
50 FOR N=1 TO NM STEP 2
60 A=7C(—1 +2*N/NM)
70 XX =160:YY =100
80 FOR T=0 T03 STEP DE
90 X = T*COS(A):Y =1- (SIN(A) —T/2)
100 IFY> —.4THENLINE XX,YY,SX"X +160,

100 — SY* Y,1:XX = SVX + 160:YY =
100 — SY*Y:GOT0110

105 T=3
110 NEXT T,N
130 GOTO 130

10 GRAPHIC 2:COLOUR 6,1,1,1
15 DRAW 1,0,000 TO 1023,800:

PAINT 1,0,808
20 NM=81
30 DE= .05
40 SX=512/SQR(3):SY = 1000
50 FOR N=1 TO NM STEP 2
60 A= le(— 1 + 211/N M)
70 POINT 0,512,512
80 FOR T=0 TO 3 STEP DE
90 X = T*COS(A):Y =1"(SIN(A) —T/2)
100 IFY> —.4THEN:DRAW 1 TO SX * X +512,

512 — SY * Y:GOT0110
105 1=3
110 NEXT T,N
130 G0T0 130

10 MODE0
20 NMAX = 81
30 DELT = .05
40 SX = 800/SQR(3):SY = 1300
50 FOR N=1 TO NMAX
60 A= Pr(—1 +2*N/NMAX)
70 MOVE 640,341
80 T= 0:REPEAT
90X = T* COS(A):Y = T*(SIN(A) —T/2)
100 IF Y> —0.4 THEN DRAW SX * X+ 640,

srY+ 341
110 T=T+DELT:UNTIL Y< = —.4 OR T>3
120 NEXT

10 PMODE4,1:PCLS1:SCREEN1,0
20 NM =81:P1=4*ATN(1)
30 DE= .05
40 SX=160/SQR(3):SY= 230
50 FOR N=1 TO NM
60 A= pr(-1+2*N/NM)
70 DRAW"BM127,118"
80 FOR T=0 TO 3 STEP DE
90 X = T*COS(A):Y = T * (SIN(A) —T/2)
100 IF Y> —.4 THEN LINE— (SX * X +127,

118 —SY * Y),PRESET ELSE T=3
110 NEXT T
120 NEXT N
130 GOTO 130
This program simulates the paths of falling
drops of water sprayed from the head of a
garden sprinkler, or, in a more modern
application, neutrons squirted from a thin
pipe connected to a reactor. In this case the
family of orbits consists of all the parabolic
paths that emerge from a particular point in
different directions but with the same speed.
The pattern formed by this family is the outer
curve which each orbit touches. This curve,
called the envelope of the family, happens,
itself, to be a parabola in this case (in gunnery
it is called the 'bounding parabola' because it
is the boundary of the region that can be
reached by projectiles of a fixed initial speed).
It is important to realize that the envelope is a
property of the whole family of parabolic
orbits and has no meaning for any single one
of them. Thus envelopes are perfect ill-
ustrations of the fact that the whole can be

greater than the sum of its parts.
In the program, the equation for the orbits

appears on Line 90. X is horizontal distance, Y
is vertical distance, T is time (starting from
zero at the instant of emission), and each orbit
in the family is labelled by A, which is an angle
giving the direction in which it starts out.
There are NMAX or NM such directions; try
changing the value of NMAX or NM in Line 20.

FOCUSING
Even straight lines can form families with
interesting envelopes, as the second program
shows.

10 BORDER 0: INK 7: PAPER 0: CLS:
LET N = 2

30 LET Y0 = 80/N/N
40 PLOT 0,— 6 —Y0*2
50 FOR X=0 TO 255 STEP 2
60 LET Y =169 —Y0 —Y0*COS (N*2"Pl*X/255)

70 DRAW X— PEEK 23677,175 —Y — PEEK
23678

80 LET XT = X + 2*Y0*N * PI*Y/255 * SIN (N*2*
PrX/255)

85 LET Y1 =0: IF XT < 0 THEN LET XT =0:
LET Y1 = Y + 255 * X/(2*WPI*Y0*SIN (N *

 2*PrX/255))
86 IF XT> 255 THEN LET XT =255: LET

Y1 = Y — (255 — X) * 255/(2*N*PrY0*SIN
(N * 2 * PrX/255))

90 DRAW XT—PEEK 23677,175—Y1 —PEEK
23678

100 PLOT X,175 —Y
110 NEXT X
120 GOTO 120

10 HIRES 6,3:COLOUR 6,3
20 N = 2
30 Y0= 80/N/N
40 XX= 0:YY = INT(160 —Y0*2)
50 FOR X=0 TO 319 STEP 2

60 Y = 160 — Y0 — Y0TOS(N*2*n*X/319)
70 LINE XX,YY,X,Y,1:XX= X:YY = Y
80 XT = X + 2"Y0*N*n*Y/319*SIN(N*2*n*

X/319)
85 Y1 = 0:IF XT < 0 THEN XT = 0:Y1 =Y+

199 * X/(2*N*n*Y0*SIN(N*2*eX/199))
86 IF XT> 319 THEN XT= 319:Y1 =Y-

(199— X)*199/(2*N*n*Y0*SIN(N*2*n *
 X/199))

90 LINE XX,YY,XT,Y1,1
110 NEXT X
120 GOTO 120

10 GRAPHIC 2:COLOR 6,1,1,1
20 N = 2
30 Y0= 200/N/N
40 XX = 0:YY = INT(512 — Y0*2)
50 FOR X=0 TO 1023 STEP 20
60 Y= 512—Y0 —Y0*COS(N*2*eX/1023)
70 DRAW 1,XX,YYTO X,Y:XX = X:YY =Y
90 XT= X+ 211 0* N*n*Y/1023 * SIN(N*2*e

X/1023)
85 Y1 =0:IF XT < 0 THEN XT= 0:Y1=Y+

1023*X/ (2*N*n*Y0*SIN (N*2*n*X/1023))
86 IF XT >1023 THEN XT=1023:Y1 = Y —

(1023 — X)*1023/(2*Wn*Y0*SIN(N*2*7t*
X/1023))

90 DRAW 1,XX,YYTO XT,Y1
110 NEXT X
120 GOTO 120

10 MODE0
20 N = 2
30 Y0 = 400/N/N
40 MOVE0,Y0*2 +30
50 FOR X=0 TO 1283 STEP 9
60 Y=Y0+30+Y0*COS(N*2*PrX/1279)
70 DRAW X,Y
80 XTOP = X + 2*Y0*N*P1*(1023 — Y) /1279 *

SIN (N*2*PI*X/1279)
90 DRAW XTOP,1023
100 MOVEX,Y
110 NEXT

NC 'HI
10 PMODE4,1:PCLS1:SCREEN1,0
20 N= 2:P1= 4*ATN(1)
30 Y0= 80/N/N
40 DRAW" BM0," + STR$(1NT(186 — Y0*2))
50 FOR X=0 TO 255 STEP 2
60 Y =186 — Y0 — Y0*COS(N*2*Pl*X/255)
70 LINE— (X,Y),PSET
80 XT = X + 2*Y0*N*13 1*Y/255*SIN(N*2*Pl*X/

255)
85 Y1 =0:IF XT<0 THEN XT=0:YZ=Y+

255*X/ (2*N* Pl*Y0*SIN (N*2* PrX/255))
86 IF XT >255 THEN XT= 255:Y1 = Y —

(255 — X)*255/(2*N*Pl*Y0*SIN(N*2*PrX/
255))

90 LINE— (XT,Y1),PRESET
100 DRAW"BM" + STR$(X) + "," + STR$

(I NT(Y))
110 NEXT
120 GOT0120

This program simulates light rays bent by
refraction through a wavy, curved surface, for
example sunlight refracted by ripples on
water in a swimming pool. The family of
orbits consists of all the straight lines at right
angles to a wavy curve of sine form. For light
rays the envelope is the curve corresponding
to focusing. Focusing is particularly intense
near the troughs (minima) of the sine wave,
where the envelope has sharp points called
cusps. These cusps are the bright points of
light you see amongst the ripples. The
existence of cusps is predicted by the
recently developed mathematics of envel-
opes, called catastrophe theory (whose drama-
tic name originated in applications of the

same mathematics to the collapse of bridges
and the capsizing of ships).

In the program, the wavy initial curve is
specified in Line 60 and the rays that start out
from it are defined in Line 80. The number of
troughs of the wavy curve is N; try changing
the value of N in Line 20 (N =1 is especially
recommended).

Trajectories that are themselves wavy
sine curves are assembled into a family in
the third program.

10 BORDER 0: PAPER 0: INK 7: CLS
20 LET QM = SQR (2*LN (3))
30 FOR Q= —QM TO QM*1.001 STEP QM/30
40 PLOT 0,75+ Q*75/QM
50 FOR T=0 TO 3*PI STEP *2
60 LET X = (MOS (EXP (— Q*Q/2)*T)
70 DRAW (T*240/3/PI)— PEEK

23677,75+ (X*75/QM) — PEEK 23678
80 NEXT T
90 NEXT Q

10 HIRES 0,1:COLOUR 1,6:MULTI 4,3,7
20 QM =SQR(210G(3))
30 FOR Q= —QM TO 0M*1.001 STEP

QM/30
40 XX= 0:YY= INT(100—Q*90/QM)
50 FOR T=0 TO 3*ir STEP *2
60 X = Q*COS(EXP(— Q*0/2)*T)
70 LINE XX,YY,T*17/3 .7c,100—X*90/QM,RND

(1)*3 + 1
75 XX = T*17/3*7t:YY =100 — X*90/QM
80 NEXT T,Q
90 GOTO 90

10 GRAPHIC 1:COLOR 6,1,3,7
20 QM =SQR(2*LOG(3))
30 FOR Q= —QM TO QM*1*001 STEP

QM/30
40 POINT 0,0,INT(512—Q*500/QM)
50 FOR T=0 TO 3'7t STEP .6
60 X= Q*COS(EXP(— Q*10/2)*T)
70 DRAW RND(1)*3 +1 TO T*116/ nr,

512— X* 500/ QM
80 NEXT T,Q
90 GOTO 90

10 MODE0
20 QM =S013(2*LN (3))
30 FOR 0= —QM TO QM*1.001 STEP QM/30
40 MOVE 0,Q*450/QM +500
50 FOR T=0 TO 3*PI STEP *2
60 X= Q*COS(EXP(—Q*Q/2)*T)
70 DRAW r1200/3/PI,X*450/QM +500
80 NEXT
90 NEXT

10 PMODE4,1:PCLS1:SCREEN1,0
20 QM = SQR(2 * L0G (3)):PI = 4 * ATN(1)
30 FOR 0= — QM TO QM * 1.001 STEP

QM/30
40 DRAW"BM0,"+ STR$(1NT(100 Q*90/

QM))
50 FOR T=0 TO 3*PI STEP .2
60 X =Q*COS(EXP(—Q*Q/2)*T)
70 LINE— (T*240/3/P1,100—X*90/0M),

PRESET
80 NEXT T
90 NEXT 0
100 GOTO 100

This program simulates light rays passing
along a thin glass optical fibre whose refrac-
tive index varies across its width, or (on a
much smaller scale) electrons winding be-
tween planes of atoms in a crystal placed in
the beam of an electron microscope. The
family consists of orbits starting out parallel
to each other at the left-hand edge of the
screen; each orbit undulates about the central
line at a rate that depends on its starting point.
Although this family is very different from
the last program, the envelope curves also
display intense focusing at cusp catastrophe
points.

In the program, orbits are specified in Line
60 by giving their distance X from the centre
line at time T. Different orbits in the family
are labelled by Q. There are 30 orbits in the
program as written; to get more or fewer,
change the number at the end of Line 30.

DOT PATTERNS
Assembling orbits into families is not the only
method of obtaining interesting patterns.
Another way is to follow the orbits for very
long times, with the result that considerable
complexity can develop even when the math-
ematics of the orbit is relatively simple. In
displaying these orbits it is not usually advis-
able to plot the continuous curve giving the
position at every instant, because over long
times this would just fill the screen with a
mess like tangled wool. Instead the orbit is
plotted at regular intervals (once every sec-
ond, for example), as though the trajectory
were viewed in the flashing light of a strobos-
cope. Examples of the resulting dot patterns
are given in the next three programs. The
position of dots on the screen does not always
correspond to the real, spatial position of
physical objects whose motion the programs
simulate; sometimes it is an abstract repres-
entation, in which horizontal screen position
corresponds to position and vertical screen
position to speed.

The fourth program will take several
minutes to RUN.

10 BORDER 0: PAPER 0: INK 7: CLS
30 LET A=76.11
40 LET ALF =A*PI/180: LET C = COS (ALF)
50 LET S =SIN (ALF)
60 LET NMAX =200
70 LET M =52
80 FOR J=1 TOM
90 LET X= 0: LET Y=J/M
100 FOR N =1 TO NMAX
110 LET W=X
120 LET X= X*C— (Y — X * X)*S: LET

Y = W*S + (Y — WW)*C
130 IF ABS (X) >4 OR ABS (Y) >4 THEN

GOTO 860
135 IF X >1 OR Y >1 THEN GOTO 150
140 PLOT Xi 28 + 128,r85 + 85
150 NEXT N
160 NEXT J

10 HIRES 0,1:COLOUR 1,6:MULTI 5,3,7
20 A=76.1
30 AL = A*n/180:C = COS(AL)
40 S=SIN(AL)
50 NM =200
60 M =52
70 FOR J=1 TOM
80 X= 0:Y=J/M:CL=RND(1) * 3+1
90 FOR N=1 TO NM
100 W=X
110 X = X*C — (Y — X*1)*S:Y = W*S + (Y —

W*W)*C
120 IF ABS(X) >4 OR ABS(Y) >4 THEN 160
125 IF ABS(Y) >1 OR ABS(X) >1 THEN 140
130 PLOT 80+ X*79,100 — Y*99,CL
140 NEXT N,J
150 GOTO 150

10 GRAPHIC 1:COLOR 6,1,3,7
20 A=76.1
30 AL = A*70180:C = COS(AL)
40 S=SIN(AL)
50 NM =200
60 M =52
70 FOR J=1 TOM
80 X=0:Y=J/M:CL=RND(1)*3+1
90 FOR N=1 TO NM
100 W=X
110 X = X*C — (Y — X * X)*S:Y = 	+

(Y —W*W)*C
120 IF ABS(X) > 4 OR ABS(Y) >4 THEN 160
125 IF ABS(Y) >1 OR ABS(X) >1 THEN 140
130 POINT CL,512+ X*512,512— Y*512
140 NEXT N,J
150 GOTO 150

10 MODE0
20 A=76.11
30 ALF =A*P1/180:C= COS(ALF)
40 S=SIN(ALF)
50 NMAX= 200
60 M =52
70 FOR J=1 TOM
80 X=0:Y=J/M
90 FOR N=1 TO NMAX
100 W=X
110 X = 	— (Y — X * X)*S:Y =W'S +

(Y— W * W)*C
120 IF ABS(X) >4 OR ABS(Y) >4 THEN END
130 PLOT 69,X*640 +640,Y*512+ 512
140 NEXT
150 NEXT

4 "HI
10 PMODE4,1:PCLS1:SCREEN1,0
20 A=76.11:P1=4*ATN(1)

30 AL =A*P1/180:C= COS(AL)
40 S=SIN(AL)
50 N M = 200
60 M =52
70 FOR J =1TOM
80 X= 0:Y =J/M
90 FORN=1TONM
100 W=X
110 X = X*C — (Y — X*X)*S:Y = \WS +

(Y—W*W)*C
120 IF ABS(X) >4 OR ABS(Y) >4 THEN 160
125 IF ABS(Y) > 1 OR ABS(X) >1 THEN140
130 PRESET(128+ X128,96— Y*96)
140 NEXT N
150 NEXT J
160 GOT0160

This program simulates motion of subatomic
particles (such as protons or electrons) in an
accelerator, or the windings of a line of force
in the magnetic bottle of a fusion power
device. Mathematically, what the program
does is to take a series of initial points and
move them about the screen by repeating a
rule that says: 'rotate about the middle of the
screen by a fixed angle, apart from a slight
modification'. Without the 'slight modific-
ation' the orbits of the points would all be
circles, and indeed those near the centre are
roughly circles. But the modification has a
dramatic effect on points initially far from the
centre: their orbits may be a series of 'islands',
or they may escape from the screen altogether.
More refined computer graphics, using high
magnification, reveals tiny islands every-
where, distributed amongst the large ones.

In the program, the number of initial
points is M, specified in Line 60; if you get
tired of waiting for the picture you can reduce
this number. Each of these points is plotted
for NMAX or NM repetitions of the transform-

Islands of dots or lines of force Focusing light in a glass fibre

ation rule; NMAX or NM is specified in Line
50* The rule itself is contained in Lines 100
and 110, which describe how the horizontal
and vertical screen coordinates X and Y are
altered at each repetition. The angle of the
unmodified rotation, in degrees, is A, speci-
fied in Line 20; you should experiment with
different values of A (try 90)*

An unexpected pattern made of dots gen-
erated by a single initial point is produced by
the next program which you should now enter
and run:

20 LET K=51.3: BORDER 0: INK 7: PAPER 0:
CLS

30 LET X =1/PI: LET P=0
40 LET A =1/SOR 5
50 FOR N =1 T010000
60 LET Y = X — *5: LET X = X + A — INT (X + A)
70 LET P = P — Y
80 PLOT X* 255,P * K + 85
90 NEXT N

10 HIRES 0,1:COLOUR 1,6:
MULTI 5,3,7:K=60

20 X =1/7r:P = 0
30 A =1/SQR (5)
40 FOR N =1 TO 10000
50Y = X — .5:X = X + A — INT(X + A)
60 P = P — Y
70 PL0T X*159,100 — P * K,RND

(1) * 3 + 1
80 NEXT N
90 G0T0 90

10 GRAPHIC 1:C0L0R 6,1,3,7:
K =300

20 X=1/7:P=0

30 A= 1/SQR(5)
40 FOR N =1 T0 10000
50 Y = X — .5:X = X + A — INT(X + A)
60 P = P — Y
70 POINT RND(1)1+1,X1 023,

512—P * K
80 NEXT N
90 GOTO 90

10 MODE0:K =300
20 X=1/PI:P= 0
30 A=1/SQR(5)
40 FOR N =1 T010000
50 Y -=X —*5:X= X+ A —1NT(X + A)
60 P = P — Y
70 PLOT 69,V1279,13*K + 512
80 NEXT

10 PMODE4,1:PCLS1:SCREEN1,0:
K =60

20 X=1/(4*ATN(1)):P= 0
30 A =1/SQR(5)
40 FOR N =1 TO 10000
50 Y = X — .5:X = X + A — INT(X + A)
60 P = P — Y
70 PRESET(X*255,128 — PK)
80 NEXT N
90 GOT090
This program is an abstract simulation of
resonance, where the frequencies of two phys-
ical effects may clash. For example, one
frequency might be that of an asteroid's
motion round the sun, and the other might be
the frequency with which the asteroid is
disturbed by the gravitational pull of the
planet Jupiter. In this case an important
question is: do the disturbing pulls mount up
and throw the asteroid out of its orbit, or do
they force it into a stable orbit? The answer is

that this depends on the ratio of the two
frequencies (that is, on one divided by the
other). The particles in Saturn's rings are
affected by similar forces.

In the program, the ratio is called A and its
value (which must be less than 1) is specified
in Line 30* The number of repetitions of the
resonance transformation is 10000 and is
specified at the end of Line 40; reduce this
value if you get tired of waiting. The trans-
formation itself is on Lines 50 and 60, and is
the rule for changing the horizontal (X) and
vertical (P) positions of the dot on the screen.

As written, the delicate curtain pattern is
produced by A =1/SQR(5) which equals
0.4472136. This is not the ratio of two whole
numbers (it is an 'irrational number') and
corresponds to nonresonance. To get reson-
ance you should try a number that is the ratio
of two whole numbers, such as A = 9/20
which equals 0.45. Then try a different
irrational number, such as A =1/P1* (If you
want to reduce the vertical scale to display
more of the picture, diminish the value of K.

CHAOS
It is a remarkable fact that some simple rules
produce no pattern at all. Such an example is
the program below which you should enter
and RUN:

10 BORDER 0: PAPER 0: INK 7: CLS
20 LET X =1/PI
30 LET Y = 1/PI
40 F0R M=1 TO 10000
50 LET X=X+Y—INT (X+Y)
60 LET Y=X+Y—INT (X+Y)
70 PL0T X*255,r175
80 NEXT M

Some simple rules produce chaos Population changes in a fish pond

10 HIRES 0,1:COLOUR 6,6:
MULTI 5,3,7

20 X=1/7r
30 Y=1/7r
40 FOR M=1 TO 10000
50 X=X+Y—INT(X+Y)
60 Y=X+Y—INT(X+Y)
70 PLOT X*159,199 Y*199,

RND(1)*3+1
90 NEXT M
90 GOTO 90

10 GRAPHIC 1:COLOR 6,1,3,7
20 X=1/n
30 Y =
40 FOR M=1 TO 10000
50 X=X+Y—INT(X+Y)
60 Y=X+Y—INT(X+Y)
70 POINT RND(1) * 3+1,X*1023,

1023 —Y*1023
80 NEXT M
90 GOTO 90

10 MODE0
20 X=1/PI
30 Y =1/PI
40 FOR M=1 TO 10000
50 X=X+Y—INT(X+Y)
60 Y=X+Y—INT(X+Y)
70 PLOT69,X*1279,Y*1023
80 NEXT

10 PMODE4,1:PCLS1:SCREEN1,0
20 PI = CATN(1):X = 1/PI
30 Y = 1/PI
40 FORM =11010000
50 X=X+Y—INT(X+Y)
60 Y=X+Y—INT(X+Y)
70 PRESET(X*255,192 —Y*191)
80 NEXT M
90 GOTO 90

This program simulates the erratic bouncing
of metal spheres in a pinball machine, or the
motion of molecules in a gas, or of a roulette
wheel, or indeed any dynamic system whose
orbits are so unpredictable as to be indistin-
guishable from what would be generated by
purely random processes. And yet the ten
thousand points on the screen are not the
result of random sprinkling but are generated
by the program from a single point by
repeating a rule that is purely deterministic—
that is, it contains no random element.

The rule is based on regarding the screen as
the 'unit square' on which horizontal distance

X and vertical distance Y range from zero to
one, and operates in three stages, constituting
Lines 50 and 60 of the program. First, the X
and Y coordinates of a point are added to
produce a new X; second, this new X is added
to Y to produce a new Y; third, if either of the
new X or Y lies outside the range 0 to 1, an
appropriate whole number is subtracted in
order to bring the transformed point back into
the unit square (in the program this subtrac-
tion is implemented by the INT function in
Lines 50 and 60).

FISH POPULATIONS
How does the population of fish in a pond
change over many generations? This depends
on the rule that determines how the popul-
ation changes from one generation to the next.
Such a rule must incorporate both the ten-
dency of the population to increase because
each set of parents produces more than two
offspring, and the tendency of the population
to decrease when it gets so large that the finite
food supply in the pond cannot sustain it.
Depending on the precise balance between
these two dependencies a fish population may
settle down to a stable fixed value, or alternate
regularly between two or more values, or
change apparently randomly between suc-
cessive generations.

The final program employs graphics and
sound to illustrate these different possi-
bilities. Horizontal screen position, denoted
by A, corresponds to the balance between
breeding and food supply and hence to the
rule relating successive generations. Vertical
screen position, denoted by Y, corresponds to
the population, represented by a point jump-
ing up or down at each generation. The
population Y is plotted on the screen only
when it has settled down to its stable value or
set of alternating values, called the attractor
set. But the way in which the population
homes in on the attractor can be heard
because the program makes the computer
emit a sound whose pitch (frequency) is
proportional to the population.

a
10 BORDER 0: INK 7: PAPER 0: CLS
20 LET S = .03 LET NMIN= 50: LET

NMAX = 80
30 FOR A=2.8 TO 4 STEP S
40 LET Y = 1/PI
50 FOR N=1 TO NMAX
60 LET Y=A*Y*(1—Y)
70 IF N>NMIN THEN PLOT 255*

(A-2.8)/1.2,1'175
80 BEEP .0075,Y*20
90 NEXT N
100 NEXT A

10 HIRES 0,1:COL0UR 1,6:
MULTI 5,3,7

15 POKE 54296,15:POKE 54277,64
20 S=1/160:NN = 50:NX = 80
30 FOR A= 2.8 TO 4 STEP S
40 Y=.25/ATN(1)
45 POKE 54276,33
50 FOR N=1 TO NX
60 Y=A*Y*(1—Y)
70 IF N>NN THEN PLOT 159*(A-2.8)/1.2,

199 —Y*199,RND(1)*3 + 1
80 POKE 54273,1 +255*Y
90 NEXT N
95 POKE 54276,32
100 NEXT A
110 GOTO 110

10 GRAPHIC 1:COLOR 6,1,3,7
15 POKE 36878,15
20 S=.01:NN = 50:NX = 80
30 FOR A=2.8 TO 4 STEP S
40 Y=.25/ATN(1)
50 FOR N=1 TO NX
60 Y=A*Y*(1—Y)
70 IF N>NN THEN:POINT RND(1)1+ 1,

1023*(A— 2.8)/1.2,1023 —Y*1023
80 POKE 36876,128+127*Y
90 NEXT N
95 POKE 36876,0
100 NEXT A
110 GOTO 110

10 MODE0
20 S=.03:NMIN = 50:NMAX = 80
30 FOR A=2.8 TO 4 STEP S
40 Y =1/PI
50 FOR N=1 TO NMAX
60 Y=A*Y*(1—Y)
70 IF N>NMIN THEN PLOT69,1279"

(A — 2.8)/1.2,Y*1023
80 SOUND1,-15,2551',1
90 NEXT
100 NEXT

MII41
10 PMODE4,1:PCLS1:SCREEN1,0
20 S=1/127:NN = 50:NX = 80
30 FORA = 2.8 104 STEP S
40 Y=.25/ATN(1)
50 FORN=1TONX
60 Y=A"Y"(1—Y)
70 IF N>NN THENPRESET(255*(A —2.8)/1.2,

192—Y*191)
80 SOUND1+255*Y,1
90 NEXT N
100 NEXT A
110 GOT0110

It is clear that the attractor undergoes drastic
changes as the amount of food is slowly
altered. To start with (on the left of the
screen); the attractor is a single point, indicat-
ing an eventually stable fish population* This
means there is enough food for the fish to live
healthily and breed well. If the population
increases too much there will be less food to
go around so some fish will die of starvation.
This leaves more food for the survivors so
they grow and breed well again* Eventually
the numbers in each generation settle down
to a constant stable population. In the
program you'll hear the sound oscillating
between each generation but settling down to
a stable value each time.

Suddenly, at a certain value of A, as the

food is increased past a certain level, the
attractor is seen and heard to branch into two
or bifurcate, indicating a population eventu-
ally alternating between two values. Later,
with even more food, the attractor bifurcates
again, indicating four alternating population
values. More and more divisions occur, form-
ing an infinite sequence of which only the first
few are resolved by this program. The suc-
cessive bifurcations accumulate at a finite A
value, corresponding to a fish population that
fluctuates among infinitely many values with-
out ever settling down.

Much excitement has been generated by
the discovery that this 'bifurcation tree',
ending in chaos, arises in a wide range of
mathematical contexts. An important applic-

ation is to the way in which the motion of a
flowing liquid changes in stages from smooth
(stable attractor) to turbulent (chaotic at-
tractor) as the speed increases (from the lazy
river to the raging torrent)* The same thing
can be seen as smoke from a cigarette rises
gently then suddenly spirals and swirls into
turbulent eddies.

In this program the population evolution
rule is specified in Line 60. Use of the sound
command gives a vivid impression of how the
orbit reaches the attractor, but does slow the
program down. To get a clearer picture of the
attractor itself in a reasonable time first delete
Line 80. You can increase the resolution by
changing Line 20 so that S = 0.005, NMIN or
N N = 200 and N MAX or NX = 300.

Find out where your money goes or
plan out the future of your business
with this handy spreadsheet
program. Add some more lines to
the program started last time

Since a spreadsheet starts out as a blank sheet
of paper (or a blank screen!) it is sometimes
difficult to know exactly what to use it for.
The examples given last time and the ideas
below should help, and you should be able to
tailor one of them to your own needs* And of
course, there is no need to limit yourself to
just one sheet* The program can be used to set
up any number of spreadsheets which can be
saved and reloaded at any time*

Here are a few examples* You could have
one sheet to record and plan out your house
expenses, where entries would go under head-
ings such as rates, mortgage, insurance, re-
pairs, etc* But if you were making a lot of
repairs you might want to set up a separate
sheet for these. You could itemise the differ-
ent types of repairs, as well as decorations and
furnishings for individual rooms, showing
how much was spent each month or each
quarter. The program could then total the
expenditure for each type of repair over the
whole house, or the total expenditure for each
room*

Yet another sheet could include all general
family expenses such as food and drink,
clothing, car, holidays and entertainment* It
could list these under different weeks or
months, or under different members of the
family*

But because the sheet starts off completely
blank you can use it for any information that
needs to be laid out in a logical way. For
example a club membership spreadsheet
could list members' names, numbers and
subscriptions paid, as well as listing and
adding up the attendances each week—using
labels for most of the entries*

A spreadsheet is also ideal for entering
details of any survey* In fact if you look back
at the article on pages 269 to 275 you'll see
that the spreadsheet is really just a much more
sophisticated version of a two-dimensional
array* The spreadsheet allows you much more
control over the way the entries are made and,
because you can enter equations as well, the
result of the survey can be calculated
immediately*

Business uses are more obvious, and are
virtually unlimited* Spreadsheets can hold
details of invoices, displaying details of the

items along with their cost, VAT, discounts
and so on* They can work out staff salaries,
where the names of the staff, hours worked,
rate of pay, allowances and tax are all listed or
worked out by the spreadsheet* They can be
used for stocktaking, for general accounts and
for budgeting—including making alternative
forecasts for the future at the push of a button*

ENTERING THE PROGRAM
The section of program given here joins on to
the one given last time* The remainder ap-
pears in the next article which also gives
detailed instructions on how to use it* So
LOAD in the last part, add these lines and SAVE
it ready for next time when you will be able to
RUN the complete program*

420 FOR a= fc TO tc: FOR b=fr TO tr
430 IF z$(3,2) ="C" THEN LET

v(2)=v(2) +1: LET
v(4) =v(4) + (v(3) < > 26)

440 IF z$(3,2)="R" THEN LET
v(3)=v(3) + (v(3) < >26): LET
v(1)=v(1)+1

450 IF v(1) <25 AND v(2) <31 AND
v(3) = 26 THEN GOTO 470

460 IF v(1) > 24 OR v(2) > 30 OR v(3) > 24
OR v(4) >30 THEN GOTO 570

470 IF v(1) <1 OR v(2) <1 OR v(3) <1 OR
v(4)<1 THEN GOTO 570

480 LET a$=CHR$ (v(1) +64) + STR$
v(2) ±CHR$ (v(3) +64) +STR$ v(4)
+ o$

485 LET c= LEN a$: IFC>8THEN RETURN
490 RESTORE 1630: FOR q=1 TO 11: LET

f=0: READ m$: FOR w=1 TO c
500 IF m$(w)="A" THEN GOSUB 1650: IF f

THEN GOTO 560
510 IF m$(w) ="N" THEN GOSUB 1670: IF f

THEN GOTO 560
520 IF m$(w)="Z" THEN GOSUB 1710: IF f

THEN GOTO 560
530 IF m$(w) ="0" THEN GOSUB 1690: IF f

THEN GOTO 560
540 NEXT w: LET z=q: GOSUB 1140:

IF NOT f THEN LET s$="0 El CI
0 0 0 0 0": FOR w=1 TO c: LET
s$(w) =a$(w): NEXT w: LET d$(b,a,9 TO
16) =s$: LET d$(b,a,18)=CHR$ z: LET

PLANNING THE SPREADSHEET
GENERAL USES

FAMILY BUDGET
HOUSEHOLD EXPENSES

CLUB MEMBERSHIP DETAILS

BUSINESS USES
INVOICES

STAFF SALARIES
STOCKTAKING

ENTERING THE PROGRAM

d$(b,a,17)="1": NEXT b: NEXT a:
RETURN

550 GOTO 570
560 NEXT q
570 RETURN
580 LET e=c: LET a$ =" 	ID"
590 PRINT # 1;AT 0,x; BRIGHT 1;"17I"
600 PAUSE 0: LET i = CODE INKEY$
610 IF i>88 THEN GOTO 600
620 IF i=13 THEN GOTO 650
630 IF i=12 THEN LET a$(4—e)=" ❑ ":

LET e=e+1: LET x=x-1
640 LET a$(4—e)= CHR$ i: PRINT #1;AT

0,x;CHR$ i: LET x =x +1: LET e=e-1:
IF e>0 THEN PAUSE 10: GOTO 590

650 IF e>1 AND (d=1 OR d=4 OR d=5)
THEN GOTO 590

655 IF e>0 AND (d=2 OR D=3) THEN
GOTO 590

660 PAUSE 10: PRINT # 1;AT 0,0;
"000001111E1000001=
❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑
❑ ❑ ":RETURN

670 LET i$=""
680 FOR z =1 TO 3
690 LET i$=i$+(a$(z) AND

a$(z) < >"0")
700 NEXT z
710 IF LEN i$ = 3 THEN IF i$(1) <"A" OR

i$(1)>"X" OR i$(2) <"0" OR
i$(2) > "9" OR i$(3) <"0" OR
3(3) >"9" THEN LET f=1: RETURN

720 IF LEN i$=3 THEN IF VAL i$(2 TO 3)=0
OR VAL i$(2 TO 3) > 30 THEN LET f=1:
RETURN

730 IF LEN i$ = 2 THEN IF i$(1) <"A" OR
i$(1)> "X" OR i$(2) <"1" OR
i$(2)>"9" THEN LET f=1: RETURN

740 IF d=2 THEN IF i$(1)< >"A" AND
i$(1) < >"R" THEN LET f =1: RETURN

750 IF d=3 THEN IF i$(1) < >"C" AND
i$(1) < >"R" THEN LET f =1: RETURN

760 LET z$(d,2 TO) = i$: LET z$(d,1) = CHR$
(LEN i$ +48): LET f=0: RETURN

770 LET fc= (CODE z$(4,2))-64: LET
tc= (CODE z$(5,2)) —64: LET fr =VAL
z$(4,3 TO (1 +VAL z$(4,1))): LET tr = VAL
z$(5,3 TO (1 +VAL z$(5,1)))

780 IF z$(3,2) ="C" THEN IF fc< >tc OR

fr >tr THEN LET f=1: RETURN
790 IF z$(3,2) ="R" THEN IF fc >tc OR

fr< >tr THEN LET f=1: RETURN
800 LET f=0: RETURN
810 FOR y=1 TO 30: FOR x=1 TO 24: LET

os= 0
820 IF d$(y,x,17)="1" THEN LET z= CODE

d$(y,x,18): GOSUB 880: GOSUB 1010:
LET st =1: LET a$ = STR$ t: LET os = LEN
a$: IF t> 99999.99 THEN LET
d$(y,x,17)="5": RETURN

830 IF os > 8 THEN LET st = os-7
840 IF os =0 THEN GOTO 860
850 LETs$=" ❑❑❑❑❑❑❑❑ ": FOR

u=st TO os: LET s$(u —st +1) = a$(u): •
NEXT u: GOSUB 1410: LET d$(y,x, TO
8) =s$

860 LET i= IN 32766: IF i = 252 THEN PRINT
#1;AT 0,0; PAPER 2; INK 7;"CALCULATE
ABORTED": RETURN

870 NEXT x: NEXT y: RETURN
880 LET s$=d$(y,x,9 TO 16)
890 IF z=1 THEN LET v(1) = (CODE

s$(1)) —64: LET v(2) =VAL s$(2): LET
v(3)= (CODE s$(3)) —64: LET v(4) =VAL
s$(4): LET o$=s$(5): RETURN

900 IF z = 2 THEN LET v(1) = (CODE
s$(1))-64: LET v(2) =VAL s$(2 TO 3):
LET v(3) = (CODE s$(4)) — 64: LET
v(4)=VAL s$(5): LET o$=s$(6): RETURN

C•31
860 A$ = A$ + " ❑ "
870 A$= LEFT$(A$,LEN(A$) —1)
880 IF RIGHT$(A$,1)=" ❑ " THEN 870
890 PS =1:LN = LEN(A$):K= 0
900 IF LN =1 AND A$="R" THEN F1 =3:

RETURN
910 IF LN =1 THEN Fl =0:RETURN
920 IF LN = 0 AND RIGHT$(D$(R,C),8)=

"0000017100"THENA$=
CHR$(128):F1 =3:RETURN

930 GOSUB790
940 PS= PS +1 + D1
950 IF D1 =0 THEN F1 =0:RETURN
960 IF PS< LN —1 THEN 930
970 IF PS> LN THEN F1 =3:RETURN
980 Q1$=0P$:02$=MID$(A$,PS,1):

GOSUB 2670

990 IF Q=0 THEN F1 =0:RETURN
1000 D=VAL(RIGHT$(A$,1))
1010 IF LN = PS THEN F1 =3:RETURN
1020 IF LN = PS+1 AND D>1 AND D<10

THEN F1 =3:RETURN
1030 F1 = 0:RETURN
1040 IF A$=""THEN RETURN
1050 GOSUB 860
1060 IF F1 =0 THEN A$="":1NPUT

"0 ENTER PrA$:GOT01040
1070 RETURN
1080 PRINT"gg"SPC(16)

"21WORKINGg"
1090 FOR C=1 TO CM
1100 FOR R=1 TO RM
1110 D=0:F=0:OP=8
1120 F$=LEFT$(D$(R,C),8)
1130 C1 =ASC(MID$(F$,1,1)) —64
1140 IF C1=64 OR C1= —32 THEN 1230
1150 IF C1 =18 THEN GOSUB 1320:

GOTO 1230
1160 R1 =VAL(MID$(F$,2,2)):IF R1 >9 THEN

F=1
1170 C2 =ASC(MID$(F$,3 + F)) —64:

IF C2= —32 THEN GOSUB 1360:
GOTO 1230

1180 IF C2= —3 THEN D=VAL(MID$
(F$,4+ F,2)):GOSUB 1360:GOTO 1230

1190 R2 = VAL(MID$(F$,4 + F,2)):
IF R2>9 THEN F=F+1

1200 Q1$=01:3:02$=MID$(F$,5+F,1):
GOSUB 2670

1210 D=VAL(MID$(F$,6+F,2))
1220 GOSUB 1360
1230 NEXT R,C
1240 RETURN
1250 GET A$:IF A$ ="" THEN 1250
1260 IF A$ <AA$ OR A$> BB$ THEN 1250
1270 RETURN
1280 GET A$:IF A$="" THEN 1280
1290 IF A$=AA$ THEN RETURN
1300 IF A$=BB$ THEN RETURN
1310 GOTO 1280
1320 AA$= RIGHT$(D$(R,C),8)
1330 IF RIGHT$(AA$,1)=" ❑ " THEN

AA$= LEFT$(F$,7):GOTO 1330
1340 D$(R,C) = LEFT$(D$(R,C),8) +AA$
1350 RETURN
1360 V1 = VAL(RIGHT$(D$(R1,C1),8)):V2 =

VAL(RIGHT$(D$(R2,C2),8))
1370 ON Q GOSUB 1420,1430,1440,1450,

1460,1470,1510,1550
1380 AA$=STR$(AN):IF LEN(AA$) > 8

THEN AA$ = "TOOLIBIG"
1390 IF LEN(AA$) <8 THEN AA$=" ❑ "+

AA$:GOTO 1390
1400 D$(R,C)=F$+AA$
1410 RETURN
1420 AN =V1 +V2:RETURN
1430 AN =V1 —V2:RETURN
1440 AN =V1*V2:RETURN
1450 AN =V1/V2:RETURN
1460 AN =V2*V1/100:RETURN
1470 AN = 0:FOR NN= R1 TO R2
1480 AN =AN +VAL(MID$(D$

(NN,C1),9,8))
1490 NEXT NN
1500 RETURN
1510 AN = 0:FOR NN =C1 TO C2
1520 AN =AN +VAL(MID$(D$(R1,

NN),9,8))
1530 NEXT NN
1540 RETURN
1550 AN =V1:RETURN
1560 PRINT"DO YOU WISH TO SAVE THIS

DATA (Y/N)?' ,

1570 AA$="Y":BB$="N":
GOSUB1280

1580 IF A$="N" THEN RETURN
1590 INPUT"DNAME";NM$:

OPEN1,1,1,NM$
1600 PRINT#1,RM:PRINT#1,CM:

FOR R=1 TO RM
1610 FOR C=1 TO CM
1620 PRINT# 1,CHR$(34) + D$(R,C) +

CHR$(34)
1630 NEXT C,R:CLOSE1:RETURN
1640 PRINT"laggHDO YOU WISH TO

LOAD"
1650 PRINT"NAN EXISTING FILE (Y/N)?"
1660 AA$="Y":BB$="N":GOSUB1280
1670 IF A$="N" THEN RETURN
1680 INPUT"NAME";NM$:OPEN 1,1,

0,NM$
1690 INPUT#1,RM,CM:FOR R=1 TO

RM:FOR C=1 TO CM
1700 INPUT#1,D$(R,C):NEXT C,R
1710 CLOSE 1:RETURN 	 _

870 DEF FNformat
880 IF LENA$ > 8 A$=LEFT$(A$,8)
890 IF Type = 8 AND LENA$<8 REPEAT

A$=A$+" ❑ ":UNTIL LENA$ = 8
900 IF Type= 0 AND LENA$<8 REPEAT

A$="111" +A$:UNTIL LENA$ = 8
910 =A$
920 DEF FNboxcheck(pos)
930 LOCAL a$,b$,p,d
940 a$= MID$(A$,pos,3)
950 b$=LEFT$(a$,1)
960 IF b$ <"A" OR b$ > "X" =0
970 p=VAL(RIGHT$(a$,2))
980 d=2:IF p<10 d=1
990 IF p>Cols OR p<1 =0
N.B. In Line 990, Electron users should
change Cols to ROWS
1000 =d
1010 DEF FNCheck
1020 LOCALpos,ln,f,d,k
1030 A$ = + "LI"
1040 REPEAT A$=LEFT$(A$,LENA$-1)
1050 UNTIL RIGHT$(A$,1)< >" ❑ "
1060 pos=1:In = LENA$
1070 IF In =1 AND A$="R" =3
1080 IF In=1 =0
1090 IF In = 0 AND RIGHT$(D$(Row,Col),

8) = STRING$(8,"111") A$=CHR$(128):
=3

1100 REPEAT
1110 k=k+1
1120 f = FNboxcheck(pos)
1130 pos=pos+1 +f
1140 UNTIL f = 0 OR pos> =In OR k = 2
1150 IF f=0 =0
1160 IF pos>In =3
1170 IF INSTR(Op$,MID$(A$,pos,1))= 0 =0
1180 d =VAL(RIGHT$(A$,1))
1190 IF In= pos =3
1200 IF In=pos+1 AND d> —1 AND

d<10 =3
1210 =0
1220 DEF PROCformulacheck
1230 LOCALvpos,f
1240 vpos =VPOS +1:IF A$="" THEN

ENDPROC
1250 REPEAT

1260 f= FNCheck
1270 IF f=0 PRINTTAB(0,vpos)CHR$129;

"INCORRECT:PLEASE RE— D0171";:INPUT

1280 UNTIL f>0
1290 ENDPROC
1300 DEF PROCcalculate
1310 PRINTCHR$129;CHR$136;"WORKING"
1320 FOR c%=1 TO Cols
1330 FOR r%=1 TO Rows
1340 d%=0: f%= 0:op%= 8
1350 F$ = LEFT$(D$(r%,c%),8)
1360 c1%=FNc(1)
1370 IF c1%=64 OR c1%= —32 GOTO 1470
1400 r1%=FNr(2):IF r1%>9 f%=1
1410 c2%=FNc(3+f%):IF c2%= —32

PROCarith:GOT01470
1420 IF c2%= —3 d%=FNr(4+f%):

PROCarith:GOT01470
1430 r2%= FNr(4+f%):IF r2%> 9

f%=f%+1
1440 op%=INSTR(Op$,MID$(F$,5+f%,1))
1450 d%= FNr(6+f%)
1460 IF op%< >0 THEN PROCarith
1470 NEXT
1480 NEXT
1490 ENDPROC
1500 DEF FNr(p%)=VAL(MID$

(F$,p%,2))
1510 DEF FNc(p%)=ASC(MID$

(F$,P%,1)) — 64
1520 DEF FNv1=VAL(RIGHT$(D$(r1%,

c1%),8))
1530 DEF FNv2=VAL(RIGHT$(D$(r2%,

c2%),8))
1540 DEF PROCgetbet(a$,b$)
1550 REPEAT A$ = GET$
1560 UNTIL A$>a$ AND A$<b$
1570 ENDPROC
1580 DEF PROCgetabs(a$,b$)

1590 REPEAT A$=GET$:UNTIL A$=a$ OR
A$= b$

1600 ENDPROC
1670 DEF PROCarith
1680 LOCALans,a$,d
1690 ON op% GOSUB 1780,1790,1800,1810,

1820,1830,1870,1910
1700 IF d%= 0 THEN ans=INT(ans+ .5):

GOTO 1720
1710 @%= &1020008+ d%*256
1720 a$=STR$(ans):IF LENa$ > 8

a$ = CHR$135 + "TOO BIG"
1730 IF LENa$ <8 a$ =" 0" +a$:

GOT01730
1740 D$(r%,c%)=F$+a$
1750 @%-= &90A
1760 ENDPROC

1
660 A$=D$(1,J):B$=MID$(A$,2)
670 AT= ASC(A$)
680 IF AT=128 THEN PRINTSTRING$(7,32);:

GOTO 720
690 IF AT=129 OR AT=130 THEN PRINT

USING "%0 ❑ ❑ ❑ ❑ %";B$;:
GOTO 720

700 FOR U=1 TO LEN(B$):IF MID$
(B$,U,1) < > CHR$(32) THEN PRINT
MID$(B$,U,1);

710 NEXTU
720 RETURN
730 C1 = ASC(Z$) — 64:C2 = VAL(MID$

(Z$,2)):V= D(C1,C2):RETURN
740 PRINT@448,"WORKING"
750 FOR J=1 TO RX
760 FOR I =1 TO CX
770 DOA =0:IF ASC(D$(I,J)) =129 THEN

DOA =VAL(MIDVD$(1,J),2))
780 NEXT I,J
790 FOR J=1 TO RX
800 FOR 1=1 TO CX
810 PRINT@448,"W0RKING ON CELL ❑ ";

CHR$(1+64);MIDVSTR$(42)
820 IF ASC(D$(I,J)) < >131 THEN 1130
830 A$= MIDVD$(1,42)
840 0$= MID$(A$,7,1)
850 IF 0$ ="&" THEN 1050
860 IF 0$ ="$" THEN 1090
870 Z$=LEFTVA$,3)

880 GOSUB 730
890 V1 =V:Z$ = MIDVA$,4,3):GOSUB 730:

V2 =V
900 DP=VAL(RIGHT$(A$,1))
910 ON INSTR(1,OP$,O$) GOSUB

1000,1010,1020,1030,1040
920 OV= 0:IF DP=0 THEN PU$=

"# # # # # # #":MP=7:
GOTO 950

930 PU$ =STRING$(7 — (DP +1),"#")+
"." + STRING$(DP," "):MP =7 —
(DP+1)

940 IF LEN(PU$)>7 THEN RV$=
"OD <OV>":0V=1

950 DOA =RV
960 IF RV<0 THEN MP=MP-1
970 ML=LEN(MID$(STRVINT(RV+.5)),2))
980 IF ML>MP THEN RV$=" ❑ ❑

< OV > ":0V = 1
990 GOTO 1160
1000 RV=V1 +V2:RETURN
1010 RV= V1 —V2:RETURN
1020 RV =V1 * V2:RETURN
1030 IF V2=0 THEN RV= 0:RETURN ELSE

RV = V1/V2:RETU RN
1040 RV =V1 * V2/100:RETURN
1050 P1 =ASC(A$) —64:P2 = ASC(MID$

(A$,4,1))— 64:C2 = VAL(MIDVA$,2,2)):
RV= 0

1060 FOR C1= P1 TO P2
1070 RV= RV+ D(C1,C2):NEXT
1080 DP =VAL(RIGHTVA$M):

GOTO 920
1090 P1 =VAL(MIDVA$,2,2)):P2 = VAL

(MIDVA$,5,2)):C1=ASC(A$)
—64:RV= 0

1100 FOR C2= P1 TO P2
1110 RV= RV + D(C1,C2):NEXT
1120 DP=VAL(RIGHT$(A$,1)):

GOTO 920
1130 IF ASC(D$(I,J)) < >128

THEN 1150
1140 RV$=STRING$(7,32):GOTO 1160
1150 RV$=MIDVD$(1,42)
1160 IF I> =CS AND I< =CS+3 AND

J> =RS AND J< =RS+11 THEN
PRINT@(J—RS) * 32
+ 35 + (I — CS)*7,'"';:PF = 1
ELSE PF= 0

1170 IF (ASC(D$(I,J)) > = 128 AND
ASC(D$(I,J)) <=130) OR OV =1 THEN
1200

1180 IF PF=1 THEN PRINT USING
PU$;RV;

1190 GOTO 1210
1200 IF PF=1 THEN PRINTUSING

1210 NEXT I,J
1220 RETURN
1230 CLS:INPUT "DO YOU WANT TO SAVE

THIS SHEET ❑ ❑ (Y/N)";A$
1240 IF A$< >"Y" THEN 1340
1250 LINE INPUT "FILENAME:";F$
1260 OPEN "0",# —1,F$
1270 FOR J=1 TO RX
1280 FOR 1=1 TO CX
1290 IF ASC(D$(I,J)) =128 THEN 1320
1300 Z$=D$(I,J):MID$(Z$,1,1)=CHR$

(ASC(MID$(Z$,1,1)) —95)
1310 PRINT# —1,STR$(I),STR$(J):

PRINT# —1,Z$
1320 NEXTI,J
1330 CLOSE# —1
1340 CLS:MO =1:GOSUB 70:RETURN
1350 CLS:INPUT "DO YOU WANT TO LOAD A

SHEET FROMTAPE (NOTE SHEET IN
MEMORY WILL BE MERGED WITH THAT
ON TAPE) ❑ ❑ ❑ ❑ (Y/N)";A$

1360 IF A$< >"Y" THEN 1480
1370 PRINT"PRESS enter TO LOAD NEXT FILE

ONTAPE- OR INPUT FILENAME
NOW":PRINT

1380 LINE INPUT "FILENAME:";F$
1390 OPEN "I",# —1,F$
1400 IF EOF(—1) THEN 1470
1410 INPUT# —1,A$,B$:LINE

INPUT# —1,C$
1420 MIDVC$,1,1)=CHRVASC(MID$

(C$,1,1)) +95)
1430 C1 =VAL(A$):C2 =VAL(B$):D$(C1,

C2) = C$
1440 IF C1 > CX THEN CX = C1
1450 IF C2> RX THEN RX= C2
1460 GOTO 1400
1470 CLOSE# —1
1480 CLS:CC = 1:CR =1:CS =1:RS =1:

MO =1:GOSUB 70:RETURN

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT.

A
Animation

of UDGs in cliffhanger 	992-997
using colour fill techniques

Acorn 	 955-959
using GCOL 3

Acorn 	 999-1000
using paged graphics

1022-1027,1132-1137
Applications

calendar and diary program
1010-1016,1017-1021,1064-1067

hobbies file, extra options 	947-952
magnification program 	1081-1087
spreadsheet program

1118-1126,1172-1176
text-editor program

852-856,878-883,914-920

B
BASIC

adding instructions to
Acorn, Dragon, Spectrum 	844-851

Basic programming
analyzing and storing sounds 1091-1095
animation with paged graphics

1022-1027,1132-1137
colour commands, Acorn 	953-959
Computer Aided Design 	998-1004
designing a new typeface 	838-843
drawing conic sections 859-863,889-895
how programs are stored 	1106-1112
mathematics of growth 	1049-1056
mechanics, principles of 	933-939
multi-key control 	 974-979
musical chords and harmonies 985-991
patterns from nature 	1164-1171
prediction by computer 	1158-1163
programming function keys 	825-829
secret codes 	960-965,1044-1048
sound envelopes

Acorn, Commodore 64 	1138-1144
speeding up BASIC programs 921-927

C
Calendar and diary program

1010-1016,1017-1021,1064-1067
Chords, musical

definition 	 985-986
programs to play

Acorn, Commodore 64 	986-991
Cliffhanger game

part 1—title page 	 904-913
part 2—adding instructions 	928-932
part 3—adding a tune 	966-973
part 4—graphics and merging 992-997
part 5—setting the scene 	1034-1043
part 6—perils and rewards 	1057-1063
part 7—initializing routine 	1101-1105
part 8—synchronizing routine

1127-1131
part 9—scoring routine 	1145-1151

Codes, secret 	960-965,1044-1048
Colour

defining in machine code 	1034-1043

filling in with
Acorn 	 953-959

in Teletext mode
BBC 	 1068-1073

routines for changing
Commodore 64 	 872-877

Computer Aided Design
rubber-banding and picking

and dragging 	 998-1004
Conic sections 	857-863,889-895

D
Digital clock routine 	896-898
Dynamics, programs to

illustrate
	

1164-1171

E
Envelope,

of orbits 	 1164-1167
sound

Acorn, Commodore 64
968-971,1138-1144

in musical harmony programs 986-991

F
Filling in with colour

Acorn 	 953-959
Fish population program 	1170-1171
Fox and geese game

part 1—principles and graphics
1096-1100

part 2—initializing and
mapping the moves 	1113-1117

part 3—higher levels 	1152-1157
Fruit machine game

1028-1033,1074-1080
Function keys, programming

Acorn, Commodore 64, Vic 20 	826-829

G
Games

cliffhanger 904-913,928-932,966-973,
992-997,1034-1043,1057-1063,1101-1105,

1127-1131,1145-1151
fox and geese

1096-1100,1113-1117,1152-1157
fruit machine 	1028-1033,1074-1080
goldmine 	 830-837,864-871
lunar touchdown 	 1088-1090
magnification 	 1081-1087
multi-key control for 	974-979
othello 	 980-984,1005-1009
wordgame 	899-903,940-945

Goldmine game 	830-837,864-871
Graphics

colour commands, Acorn 	953-959
effects using curves 	857-863,889-895
hi-res

for custom typeface 	838-843
setting up new commands

Commodore 64 	 872-877
magnification program for 1081-1087

paged, for animation
1022-1027,1132-1137

patterns from nature 	1164-1171
picking and dragging 	1000-1004
rubber-banding 	 998-1000
trace of sound 	 1092-1095
using Teletext mode, BBC 	1068-1073

Growth, measuring 	1049-1056

H
Hobbies file, extra options for 	947-952

Instructions, adding to BASIC
Acorn, Dragon, Spectrum 	844-851

K
Keypresses, multiple, programming for

974-979

L
Letter-generator program 	838-843
Lunar touchdown game 	1088-1090

M
Machine code

games programming
see cliffhanger

merging routines 	 992-997
routines for hi-res graphics

Commodore 64 	 872-877
routine to alter BASIC 	844-849
timer routine 	 896-898
tune routine 	 966-973

Magnification program 	1081-1087
Mathematical functions

in mechanics 	 935
in spreadsheet program 	1120
speedy use of 	 923-924
to assess population tendencies

1170-1171
to draw curves 857-863,889-895
to draw patterns from orbits

1164-1170
to measure growth 1049-1056

Mechanics
programs to show principles of 933-939

Memory
how BASIC programs are stored in

1106-1112
paged graphics in 1023-1027,1132-1137

Multi-key control, programming for
974-979

Music
analyzing and storing
	1091-1095

chords and harmonies
	

985-991
machine code routine for
	

966-973

N
Numbers

Fibonacci

generation program
	1054-1056

0
Orbits, patterns from 	1164-1171
Othello board game

980-984,1005-1009

P
Paged graphics 	1023-1027,1132-1137
Patterns from nature 	1164-1171
PLOT

new commands, Acorn 	953-959
Pools simulation program 	1158-1160
Prediction by computer 	1158-1163

R
RND function

in computing probability
	1160-1163

Robotics
	 884-888

S
Search routines

binary and serial 	 924-927
in text-editor program 	914-920
single pass 	 1162-1163

Sounds
analyzing and storing 	1091-1095
envelopes for modifying

Acorn, Commodore 64 	1138-1144
Sort routines

in hobbies file program 	947-953
in text-editor program 	914-920

Speeding up BASIC programs 921-927
Spreadsheet program

part 1 	 1118-1126
part 2 	 1172-1176

T
Teletext mode, BBC 	1068-1073
Text-editor program

part 1—basic routines
	

852-856
part 2—editing facilities
	

878-883
part 3—sorting, searching,

formatting and printout 	914-920
Timer routine

for BASIC lines 	 922
machine code 	 896-898

Typeface. setting up new 	838-843

V
Variables

managing for program speed 	923-925
setting in machine code game 1127-1131
storing in memory 	1106-1112

Waveforms
displaying and storing 	1092-1095
modulation of 	1138-1139,1142

1056 	Wordgame 	 899-903,940-945

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

A fearsome Martian spider, a neurotic
window cleaner, a bevy of balloons and
an accumulation of arrows are all part of
FREDDY AND THE SPIDERS FROM
MARS, our BASIC arcade game

,!.../Complete the SPREADSHEET
program and plan your finances

JGot ten thumbs? Can't draw a thing?
GRAPHICS OF ROTATION allows you
to create realistic three-dimensional
views of any shape you choose

;...1 Use statistical techniques to MODEL
REALITY. Find out how to apply
statistical models

Sight some circling seagulls in
CLIFFHANGER on the SPECTRUM,
COMMODORE and ACORN machines

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

